* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    04 de Abril de 2025, 04:22
  • j.s.: try65hytr a todos  4tj97u<z
    03 de Abril de 2025, 21:00
  • migcontins: Quim Barreiros - A Esteticista (EP) 2025
    03 de Abril de 2025, 15:42
  • FELISCUNHA: ghyt74   49E09B4F  E bom fim de semana   4tj97u<z
    29 de Março de 2025, 10:06
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0
    28 de Março de 2025, 03:20
  • cereal killa: try65hytr pessoal so passei para desejar uma boa noite  wwd46l0'
    27 de Março de 2025, 20:44
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    27 de Março de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    26 de Março de 2025, 20:40
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    22 de Março de 2025, 11:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    21 de Março de 2025, 03:27
  • j.s.: try65hytr a todos  49E09B4F
    20 de Março de 2025, 18:41
  • JPratas: dgtgtr Pessoal  4tj97u<z classic k7y8j0
    20 de Março de 2025, 18:22
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    19 de Março de 2025, 16:30
  • estorula: bitrecover
    18 de Março de 2025, 22:37
  • estorula: BitRecover PST Converter Wizard 10.6.2 Portable
    18 de Março de 2025, 22:33

Autor Tópico: Traffic Forecasting with Python LSTM & Graph Neural Network  (Lida 19 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118830
  • Karma: +0/-0
Traffic Forecasting with Python LSTM & Graph Neural Network
« em: 20 de Novembro de 2024, 11:57 »
Traffic Forecasting with Python: LSTM & Graph Neural Network


Published 11/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 8m | Size: 244 MB

Python-driven traffic forecasting with Keras: LSTM and Graph Convolutional Networks for spatiotemporal data modeling


What you'll learn
Understand and analyze real-world traffic data using Python.
Implement and apply Graph Convolutional Networks (GCNs) for traffic data.
Combine LSTM networks with GCNs for time series forecasting.
Preprocess and normalize large datasets for machine learning.
Build, train, and evaluate predictive models using TensorFlow and Keras.
Visualize and interpret model results for traffic prediction.
Requirements
Basic proficiency in Python programming.
Access to a computer with an internet connection for coding and data analysis.
Description
This course offers an in-depth journey into the world of advanced time series forecasting, specifically tailored for traffic data analysis using Python. Throughout the course, learners will engage with the PeMSD7 dataset, a real-world traffic speed dataset, to develop predictive models that can forecast traffic conditions with high accuracy. The course focuses on integrating Long Short-Term Memory (LSTM) networks with Graph Convolutional Networks (GCNs), enabling learners to understand and apply cutting-edge techniques in spatiotemporal data analysis.Key topics include data preprocessing, feature engineering, model building, and evaluation, with hands-on coding in Python to solidify understanding. Learners will also gain practical experience in using popular libraries such as TensorFlow and Keras for deep learning applications.This course is ideal for those looking to advance their careers in data science, machine learning, or AI-driven industries. The practical skills acquired will be highly valuable for roles in smart city planning, transportation analysis, and any field that relies on predictive modeling. By the end of the course, learners will not only have a strong grasp of advanced forecasting techniques but will also be well-prepared for job opportunities in data science and related fields, where they can contribute to innovative solutions in traffic management and urban development.
Who this course is for
Data scientists and machine learning engineers interested in time series forecasting.
Python programmers looking to enhance their skills in deep learning and graph-based models.
Researchers and students in the fields of transportation, urban planning, or smart cities.
Professionals working with traffic data or other spatiotemporal datasets.
AI enthusiasts seeking to understand and implement advanced neural network architectures like LSTM and graph convolutional networks.
Individuals with a background in data analysis who want to apply machine learning to real-world datasets.
Homepage:
Código: [Seleccione]
https://www.udemy.com/course/traffic-forecasting-with-python-lstm-graph-neural-network/
Screenshots


Download link

Say "Thank You"

rapidgator.net:
Citar
https://rapidgator.net/file/63a7fabc8d16a2aadc1a56f574a33da2/ibdsk.Traffic.Forecasting.with.Python.LSTM..Graph.Neural.Network.rar.html

k2s.cc:
Citar
https://k2s.cc/file/1e998049c88dd/ibdsk.Traffic.Forecasting.with.Python.LSTM..Graph.Neural.Network.rar