* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53

Autor Tópico: Deep Learning for time-series forecasting on Carbon Dioxide  (Lida 17 vezes)

0 Membros e 2 Visitantes estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 116452
  • Karma: +0/-0
Deep Learning for time-series forecasting on Carbon Dioxide
« em: 26 de Setembro de 2024, 10:03 »
Deep Learning for time-series forecasting on Carbon Dioxide



Published 9/2024
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 22m | Size: 743 Mb
Use Machine Learning methodologies in Python - a step by step methodology for accurate forecasts


What you'll learn
Understand and apply deep learning models for time-series forecasting of CO2 emissions using Python.
Implement a step-by-step methodology for generating accurate CO2 forecasts, incorporating statistical tests and analysis.
Analyze and forecast long-term carbon dioxide trends across different regions, including India, the USA, the UK, and more.
Develop practical skills in data preprocessing, model validation, and performance optimization to create reliable environmental forecasts.
Requirements
No prerequisites except basic Python.
Description
This course, "Deep Learning for Time-Series Forecasting on Carbon Dioxide, in Python," will guide you through building advanced models for predicting CO2 levels far into the future. Focusing on real-world applications, you'll explore how to forecast carbon emissions across key regions, including India, the USA, and the UK. You will gain hands-on experience by following a step-by-step methodology, ensuring you understand each phase of the forecasting process. Starting with data preprocessing and statistical analysis, the course will guide you through building deep learning models. You'll also perform key statistical tests to validate the accuracy of your forecasts. By the end, you'll be proficient in creating highly accurate long-term predictions, applying them to global environmental trends, and gaining insights that can help address climate change challenges.Accurate forecasts on CO2 levels are critical for understanding and addressing the impacts of climate change. Reliable predictions help governments, organizations, and policymakers make informed decisions on how to reduce emissions and meet international climate goals. They are also essential for anticipating future trends in global warming, sea-level rise, and extreme weather events, allowing for better planning and adaptation strategies. Furthermore, accurate CO2 forecasts can guide investments in renewable energy, carbon capture technologies, and sustainable practices, helping mitigate the long-term effects of climate change. Overall, precise forecasting is a crucial tool for safeguarding the planet's future.
Who this course is for
Data scientists and analysts interested in applying deep learning techniques to environmental data and forecasting.
Climate researchers and environmental professionals looking to enhance their skills in predictive modeling for CO2 emissions.
Python programmers and developers eager to learn how to build time-series forecasting models using deep learning frameworks.
Policy makers, energy analysts, and sustainability consultants who need accurate long-term CO2 forecasts to inform decision-making.
Graduate students or academics in fields such as environmental science, data science, or machine learning, seeking practical applications in forecasting.

Homepage:
Código: [Seleccione]
https://www.udemy.com/course/deep-learning-for-time-series-forecasting-on-co2/
Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/a431db0e2f4c2884a485357dcc2efb34/kcidn.Deep.Learning.for.timeseries.forecasting.on.Carbon.Dioxide.rar.html

ddownload.com:
Citar
https://ddownload.com/nz055mm12a51/kcidn.Deep.Learning.for.timeseries.forecasting.on.Carbon.Dioxide.rar