* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  classic k7y8j0
    Hoje às 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37

Autor Tópico: Llm Model Quantization: An Overview  (Lida 68 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115977
  • Karma: +0/-0
Llm Model Quantization: An Overview
« em: 16 de Novembro de 2023, 11:16 »

Llm Model Quantization: An Overview
Published 11/2023
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 242.65 MB | Duration: 0h 44m

A General Introduction and Overview of LLM Model Quantization Techniques and Practices

What you'll learn
Understand the fundamental principles of model quantization and its critical role in optimizing Large Language Models (LLMs) for diverse applications.
Explore and differentiate between various types of model quantization methods, including post-training quantization, quantization-aware training.
Gain proficiency in implementing model quantization using major frameworks like TensorFlow, PyTorch, ONNX, and NVIDIA TensorRT.
Develop skills to effectively evaluate the performance and quality of quantized LLMs using standard metrics and real-world testing scenarios.
Requirements
Understanding of Python, Neural Networks, and Hugging Face Libraries is recommended for this course.
Description
Course Description:This course offers a deep dive into the world of model quantization, specifically focusing on its application in Large Language Models (LLMs). It is tailored for students, professionals, and enthusiasts interested in machine learning, natural language processing, and the optimization of AI models for various platforms. The course covers fundamental concepts, practical methodologies, various frameworks, and real-world applications, providing a well-rounded understanding of model quantization in LLMs.Course Objectives:Understand the basic principles and necessity of model quantization in LLMs.Explore different types and methods of model quantization, such as post-training quantization, quantization-aware training, and dynamic quantization.Gain proficiency in using major frameworks like PyTorch, TensorFlow, ONNX, and NVIDIA TensorRT for model quantization.Learn to evaluate the performance and quality of quantized models in real-world scenarios.Master the deployment of quantized LLMs on both edge devices and cloud platforms.Course Structure:Lecture 1: Introduction to Model QuantizationOverview of model quantizationSignificance in LLMsBasic concepts and benefitsLecture 2: Types and Methods of Model QuantizationPost-training quantizationQuantization-aware trainingDynamic quantizationComparative analysis of each typeLecture 3: Frameworks for Model QuantizationPyTorch's quantization toolsTensorFlow and TensorFlow LiteONNX quantization capabilitiesNVIDIA TensorRT's role in quantizationLecture 4: Evaluating Quantized ModelsPerformance metrics: accuracy, latency, and throughputQuality metrics: perplexity, BLEU, ROUGEHuman evaluation and auto-evaluation techniquesLecture 5: Deploying Quantized ModelsStrategies for edge device deploymentCloud platform deployment: OpenAI and Azure OpenAITrade-offs, benefits, and challenges in deploymentTarget Audience:AI and Machine Learning enthusiastsData Scientists and EngineersStudents in Computer Science and related fieldsProfessionals in AI and NLP industries
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Types and Methods of Model Quantization
Lecture 3 Frameworks and Libraries That Can Be Used to Apply Model Quantization to LLMs
Lecture 4 Performance and Quality Evaluation of Quantized LLMs
Lecture 5 Deploying Quantized LLMs on Edge Devices and Cloud Platforms
Lecture 6 Summary
Anyone who is interested in learning about model quantization, the steps, and the process.

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/410f264f19290502defd3dfabc567ab6/athqi.Llm.Model.Quantization.An.Overview.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/d30212F3c7e869ad/athqi.Llm.Model.Quantization.An.Overview.rar

ddownload.com:
Citar
https://ddownload.com/jgpim7mqsrw6/athqi.Llm.Model.Quantization.An.Overview.rar