* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  classic k7y8j0
    Hoje às 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37

Autor Tópico: Logistic Regression in Python - Credit Default Prediction  (Lida 38 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115977
  • Karma: +0/-0
Logistic Regression in Python - Credit Default Prediction
« em: 31 de Outubro de 2023, 07:56 »


Logistic Regression in Python - Credit Default Prediction
Published 10/2023
Created by EDUCBA Bridging the Gap
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 19 Lectures ( 2h 41m ) | Size: 1 GB
Learn key components of logistic regression and develop a logistic regression model using python

What you'll learn
Know how to interpret logistic regression analysis output produced by python
Learn how to interpret the modeling results and present it to others
Understand about the key components of logistic regression
Explain logistic regression and its benefits
Requirements
python basics
statistics basics
Description
There are different types of statistical, data mining and machine learning algorithms in Predictive Modeling. Each algorithm is used to address the specific needs of the business concern. So choosing the right algorithm for your business is a great task. Regression algorithm is one among them. Regression algorithm is used to forecast continuous data like credit scoring or predicting the next outcome of a time based event. For example regression algorithm can be used to predict the trend of a stock movement with its past prices.Regression is a statistical method which helps to determine the relationship between one dependent variable and other independent variables. It explains how the dependent variable changes when one of the independent variable varies. It is also used to know which independent variable is related to the dependent variable and what is their relationship. Regression analysis is widely used in the field of prediction and forecasting. Regression analysis is an important component for modelling and analyzing data.In the recent years many techniques have been developed to perform regression analysis. They are Linear regression, Logistic regression, Polynomial regression, Stepwise regression, Ridge regression, Lasso Regression and Elastic net regression.Logistic regression is also known as logit regression or logit model. This is used to find the probability of event success and event failure. Logistic regression determines the relationship between categorical dependent variable and one or more independent variables using a logistic function.Logistic regression is used for predicting the probability of occurrence of an event by fitting the data to a logistic curve. Ordinary Least Squares on the other hand is an important computational problem that is used in applications when there is a need to use a linear mathematical model to measurements which are derived from the experiments. OLS takes various forms like Correlation, multiple regression, ANOVA and others. Logistic regression is most widely used in the field of medical science whereas OLS is mostly used in social sciences.
Who this course is for
Anyone who wants to learn about data and analytics

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/4d1a6fb8572f16cec9d8211e9daabc38/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part1.rar.html
https://rapidgator.net/file/be02d76d8a9dcb4159bd0defe5aa57dd/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/f6C08142b555724b/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part1.rar
https://uploadgig.com/file/download/43b5b6E923e03ed0/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part2.rar

nitroflare.com:
Citar
https://nitroflare.com/view/FC6C583CF03AEFF/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part1.rar
https://nitroflare.com/view/A204F74B7CD2D8B/dghfc.Logistic.Regression.in.Python..Credit.Default.Prediction.part2.rar