* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  classic k7y8j0
    Hoje às 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37

Autor Tópico: Privacy-Preserving Machine Learning, Video Edition  (Lida 20 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115977
  • Karma: +0/-0
Privacy-Preserving Machine Learning, Video Edition
« em: 25 de Outubro de 2023, 06:53 »

Privacy-Preserving Machine Learning, Video Edition
Published 05/2023
Duration: 9h 37m | Video: .MP4, 1280x720 30 fps | Audio: AAC, 48 kHz, 2ch | Size: 1.15 GB
Genre: eLearning | Language: English

In Video Editions the narrator reads the book while the content, figures, code listings, diagrams, and text appear on the screen. Like an audiobook that you can also watch as a video.

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models.

In Privacy Preserving Machine Learning, you will learn

Privacy considerations in machine learning
Differential privacy techniques for machine learning
Privacy-preserving synthetic data generation
Privacy-enhancing technologies for data mining and database applications
Compressive privacy for machine learning

Privacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You'll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you're done reading, you'll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance.

About the Technology
Machine learning applications need massive amounts of data. It's up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you'll need to secure your data pipelines end to end.

About the Book
Privacy Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You'll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you'll develop in the final chapter.

What's Inside
Differential and compressive privacy techniques
Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning
Privacy-preserving synthetic data generation
Enhanced privacy for data mining and database applications

rapidgator.net:
Citar
https://rapidgator.net/file/03e1f50af704627ce60f80f95322786d/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part1.rar.html
https://rapidgator.net/file/1e0749e1defdf32066e59969777f0402/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part2.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/F76874494092ee6B/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part1.rar
https://uploadgig.com/file/download/932a8e6E59C52291/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part2.rar

nitroflare.com:
Citar
https://nitroflare.com/view/4B0B47928CBE3B7/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part1.rar
https://nitroflare.com/view/E5E087948DC8709/vperk.PrivacyPreserving.Machine.Learning.Video.Edition.part2.rar