* Cantinho Satkeys

Refresh History
  • cereal killa: dgtgtr e boas ferias  r4v8p 535reqef34
    18 de Agosto de 2025, 13:04
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    18 de Agosto de 2025, 11:31
  • joca34: bom dia alguem tem es cd Portugal emigrante 2025
    17 de Agosto de 2025, 05:46
  • j.s.: bom fim de semana  49E09B4F
    16 de Agosto de 2025, 20:47
  • j.s.: try65hytr a todos  4tj97u<z
    16 de Agosto de 2025, 20:47
  • Itelvo: Bom dia pessoal
    15 de Agosto de 2025, 14:02
  • FELISCUNHA: ghyt74  e bom feriado  4tj97u<z
    15 de Agosto de 2025, 11:11
  • JPratas: try65hytr A Todos  htg6454y k7y8j0
    15 de Agosto de 2025, 04:06
  • FELISCUNHA: h7t45  j.s. pela informação
    13 de Agosto de 2025, 10:20
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    13 de Agosto de 2025, 10:19
  • j.s.: 4tj97u<z 4tj97u<z
    12 de Agosto de 2025, 17:37
  • j.s.: Relembramos que por mudança de servidor, que vai ter lugar entre as 20h00 do dia 13/0/2025 e as 10h00 do dia 14/08/2025, podemos neste periodo estar em off line
    12 de Agosto de 2025, 17:36
  • j.s.: dgtgtr a todos  4tj97u<z
    12 de Agosto de 2025, 17:33
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    09 de Agosto de 2025, 11:19
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i yu7gh8 k7y8j0
    08 de Agosto de 2025, 03:48
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Agosto de 2025, 08:43
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Agosto de 2025, 16:51
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    04 de Agosto de 2025, 11:48
  • ricardo 2087: Toy
    02 de Agosto de 2025, 22:21
  • FELISCUNHA: dgtgtr  49E09B4F  e bom fim de semana   htg6454y
    02 de Agosto de 2025, 18:16

Autor Tópico: Approximability of Optimization Problems through Adiabatic Quantum Computation  (Lida 133 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online oaxino

  • Moderador Global
  • ***
  • Mensagens: 37992
  • Karma: +0/-0


English | PDF | 2014 | 115 Pages | ISBN : 1627055568 | 1.1 MB


The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2ⁿ x 2ⁿ, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms.

DOWNLOAD

rapidgator.net:
Citar
https://rapidgator.net/file/cd23a66327d56491644a1adb60308913/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf.html

nitroflare.com:
Citar
https://nitroflare.com/view/50562A5D885A554/eofqh.Approximability.of.Optimization.Problems.through.Adiabatic.Quantum.Computation.pdf