* Cantinho Satkeys

Refresh History
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31

Autor Tópico: Machine Learning For Energy Forecast  (Lida 34 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115840
  • Karma: +0/-0
Machine Learning For Energy Forecast
« em: 19 de Novembro de 2022, 03:12 »


Published 11/2022
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 645.65 MB | Duration: 1h 18m

Presenting Linear Regression for Forecasting on Energy Datasets

What you'll learn
How to actually use Machine Learning on Energy Datasets
Clarifying key concepts about Machine Learning models
Specialized analysis on all stages - starting with preprocessing until forecasts
Theoretical foundations along with practical explanations
Part of the giannelos official certificate for high-tech projects.
Requirements
The only prerequisite is to take the first course of the program , which is the course "Data Science Code that appears all the time at workplace".
Description
What is the course about:The course shows - step by step and in great detail - how to apply Machine Learning and specifically Linear Regression, on an energy dataset. Using this algorithm, we generate forecasts all the way to 2050. This requires fine tuning of all hyperparameters, including the selection of the degree of the polynomial. In depth sensitivity analyses are performed and demonstrate the importance of the forecasting error, which we evaluate using proxies and statistical measures.Who:I am a research fellow at Imperial College London, and I have been part of high-tech projects at the intersection of Academia & Industry for over 10 years, prior to, during & after my Ph.D. I am also the founder of the giannelos dot com program in data science.Doctor of Philosophy (Ph.D.) in Analytics & Mathematical Optimization applied to Energy Investments, from Imperial College London, and Master of Engineering (M. Eng.) in Power Systems and Economics. Important:Prerequisites: The course Data Science Code that appears all the time at Workplace.Every detail is explained, so that you won't have to search online, or guess. In the end, you will feel confident in your knowledge and skills. We start from scratch so that you do not need to have done any preparatory work in advance at all. Just follow what is shown on screen, because we go slowly and explain everything in detail.
Overview
Section 1: Preparing the data
Lecture 1 Data Preprocessing
Lecture 2 Polynomials
Lecture 3 Splitting the dataset & defining targets
Section 2: Fitting the LR models
Lecture 4 Fitting
Lecture 5 scaling
Enterpreneurs,Economists,Quants,Members of the highly googled program,Investment Bankers,Academics, PhD Students, MSc Students, Undergrads,Postgraduate and PhD students.,Data Scientists,Energy professionals (investment planning, power system analysis),Software Engineers,Finance professionals


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/ef7fcf47b4b75ec717cfda7757e2306f/visty.Machine.Learning.For.Energy.Forecast.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/f50b66ef67D57547/visty.Machine.Learning.For.Energy.Forecast.rar

nitroflare.com:
Citar
https://nitroflare.com/view/687B78D6588DC33/visty.Machine.Learning.For.Energy.Forecast.rar

1dl.net:
Citar
https://1dl.net/4cclj16h5ymp/visty.Machine.Learning.For.Energy.Forecast.rar.html