* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Deep Learning with PyTorch video edition  (Lida 73 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115810
  • Karma: +0/-0
Deep Learning with PyTorch video edition
« em: 30 de Julho de 2021, 15:13 »
MP4 | Video: AVC 1276 x 716 | Audio: AAC 44 Khz 2ch | Duration: 15:32:46 | 5.41 GB
Genre: eLearning | Language: English

With this publication, we finally have a definitive treatise on PyTorch. It covers the basics and abstractions in great detail.
From the Foreword by Soumith Chintala, Cocreator of PyTorch

Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands, providing a comfortable Python experience that gets you started quickly and then grows with you as you-and your deep learning skills-become more sophisticated. Deep Learning with PyTorch will make that journey engaging and fun.

about the technology
Although many deep learning tools use Python, the PyTorch library is truly Pythonic. Instantly familiar to anyone who knows PyData tools like NumPy and scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It's excellent for building quick models, and it scales smoothly from laptop to enterprise. Because companies like Apple, Facebook, and JPMorgan Chase rely on PyTorch, it's a great skill to have as you expand your career options. It's easy to get started with PyTorch. It minimizes cognitive overhead without sacrificing the access to advanced features, meaning you can focus on what matters the most - building and training the latest and greatest deep learning models and contribute to making a dent in the world. PyTorch is also a snap to scale and extend, and it partners well with other Python tooling. PyTorch has been adopted by hundreds of deep learning practitioners and several first-class players like FAIR, OpenAI, FastAI and Purdue.

about the book
Deep Learning with PyTorch teaches you to create neural networks and deep learning systems with PyTorch. This practical book quickly gets you to work building a real-world example from scratch: a tumor image classifier. Along the way, it covers best practices for the entire DL pipeline, including the PyTorch Tensor API, loading data in Python, monitoring training, and visualizing results. After covering the basics, the book will take you on a journey through larger projects. The centerpiece of the book is a neural network designed for cancer detection. You'll discover ways for training networks with limited inputs and start processing data to get some results. You'll sift through the unreliable initial results and focus on how to diagnose and fix the problems in your neural network. Finally, you'll look at ways to improve your results by training with augmented data, make improvements to the model architecture, and perform other fine tuning.

what's inside
Training deep neural networks
Implementing modules and loss functions
Utilizing pretrained models from PyTorch Hub
Exploring code samples in Jupyter Notebooks
about the audience
For Python programmers with an interest in machine learning.

about the authors
Eli Stevens had roles from software engineer to CTO, and is currently working on machine learning in the self-driving-car industry. Luca Antiga is cofounder of an AI engineering company and an AI tech startup, as well as a former PyTorch contributor. Thomas Viehmann is a PyTorch core developer and machine learning trainer and consultant.

Deep learning divided into digestible chunks with code samples that build up logically.
Mathieu Zhang, NVIDIA

Timely, practical, and thorough. Don't put it on your bookshelf, but next to your laptop.
Philippe Van Bergen, PC Consulting

Deep Learning with PyTorch offers a very pragmatic overview of deep learning. It is a didactical resource.
Orlando Alejo Mendez Morales, Experian

NARRATED BY MARK THOMAS

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction