* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Python Data Visualization using Seaborn - Intermediate  (Lida 115 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Python Data Visualization using Seaborn - Intermediate
« em: 21 de Julho de 2021, 01:58 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 9 lectures (1 hour, 12 mins) | Size: 630 MB
Be proficient with seaborn technology that is widely used for statistical data visualization techniques

What you'll learn

Under this part of the training program, advanced concepts of seaborn tool that are an introduction to seaborn advance, building structure multiDescription grids, conditional small multiplies, use of custom functions, Descriptionting pairwise data relationships, choosing color palettes, use of different seaborn figure styles, setting different color palettes, use of reference files in advance, etc.
This part of the training program what we learn about intermediate functionalities of seaborn which includes Descriptionting univariate distribution, clotting of bivariate distributions, visualizing linear relationships, functions to draw linear regression models, filtering different kinds of models, conditioning all other variables, join Description and LM Description, use of reference files, KDE Description, etc.

Course
Requirements

Basic knowledge about Data and analytics and Python programming would be preferable
Anyone serious about learning Data Visualization and wants to make a career in this Field

Description

With this course, any sort of tradings or tutorial the efficiency of the training increases drastically is it provides a space for the learners to experiment and everywhere their knowledge in real-time scenarios which helps them understand the concepts in a better way. Different techniques and tools are involved in this training to increase the utility and efficiency of the program. skills that are part of this training program are as follows:

Visualizing the Distribution of a Dataset

Descriptionting Univariate Distributions

Descriptionting Bivariate Distributions

Visualizing Linear Relationships

Functions to Draw linear Regression Models

Fitting Different Kinds of Models

Conditioning on Other Variables

Examples on KDEDescription

Examples on PAIRDescription

JOINTDescription and LMDescription

Under this part of the training program, advanced concepts of seaborn tool that are an introduction to seaborn advance, building structure multiDescription grids, conditional small multiplies, use of custom functions, Descriptionting pairwise data relationships, choosing color palettes, use of different seaborn figure styles, setting different color palettes, use of reference files in advance, etc.

This part of the training program what we learn about intermediate functionalities of seaborn which includes Descriptionting univariate distribution, clotting of bivariate distributions, visualizing linear relationships, functions to draw linear regression models, filtering different kinds of models, conditioning all other variables, join Description and LM Description, use of reference files, KDE Description, etc.

Who this course is for:

The target audience becomes anybody who is interested in learning this Python Seaborn Tutorial and follows the above-mentioned pre-requisites
software engineers, testers
Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction