* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Data Management for Retail Dataset using Python and Pandas  (Lida 92 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Data Management for Retail Dataset using Python and Pandas
« em: 20 de Julho de 2021, 08:53 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + .srt | Duration: 19 lectures (3 hour, 46 mins) | Size: 1.61 GB
You will get to learn about the approach that is used to develop the data management based solution

What you'll learn

You will get to learn about the approach that is used to develop the data management based solution. To complete the projects, you will be working using python and all the libraries that we got covered in this training.
we will be using the concepts covered in the course to develop the solution. You will get to learn about various new concepts in this project and will also master the topics that revolve around data analytics.

Requirements

Basic understanding of Computer Programming terminologies.
Basic understanding of any of the programming languages is a plus.
Basic knowledge of Python and Mathematics
No prior information for machine learning is needed.

Description

Pandas is an open-source, BSD-licensed Python library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. This Python course will get you up and running with using Python for data analysis and visualization.

This course has a project that will be based on Data Analytics with Data Exploration Case Study. In this project, we will be using the concepts covered in the course to develop the solution. You will get to learn about various new concepts in this project and will also master the topics that revolve around data analytics. Data Management for Retail Dataset will be the next important project that has been added to this training. You will get to learn about the approach that is used to develop the data management-based solution. To complete the projects, you will be working using python and all the libraries that we got covered in this training.

Panda and NumPy is a library for Python, where NumPy helps by contributing to numerical work lads and computation works. Panda, on the other hand, is preferred for data wrangling and data manipulation-related works. Both the NumPy and Panda constitute to Pythons being a scientific language. Its possibility to encounter Matrix and Vector manipulation is possible with NumPy and Panda's library (rather we call an essential). NumPy means Numerical Python and is an open-source structure for mathematical needs. A must-have an array for high-level mathematical functions. NumPy is associated with Machine learning in ways like Scikit-learn, Pandas, MatDescriptionlib, and TensorFlow. Panda, on the other hand, offers similar features in Machine learning and is the most widely-used Python library. It is easy to use, easy to structure, delivers high performance, and is a great data analysis tool.

Who this course is for:

Anyone who wants to learn the basics and various functions of Pandas.
Data Engineers, Architects, Analysts, Software Engineers, IT operations, Technical Managers, Data Scientists
Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction