* Cantinho Satkeys

Refresh History
  • Gerard: j'espère que tous sont en train d'être bem
    12 de Setembro de 2025, 13:28
  • Gerard: Boas tardes
    12 de Setembro de 2025, 13:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    12 de Setembro de 2025, 11:51
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    12 de Setembro de 2025, 03:29
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52

Autor Tópico: Introduction to Fourier Transform and Spectral Analysis  (Lida 118 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Introduction to Fourier Transform and Spectral Analysis
« em: 16 de Julho de 2021, 08:41 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 19 lectures (4h 31m) | Size: 821.2 MB
Fourier Transform Basics, including basic mathematical concepts required for spectral analysis.

What you'll learn:
introduction to fourier analysis of signals, spectral analysis

Requirements
college level mathematics and physics

Description
There are hundreds of textbooks that cover the complicated mathematics of the Fourier transform but no materials that explain its most basic principles. After many years working in signal and image processing, I have discovered that simple explanations are often overlooked. This course is targeted towards individuals who may have little experience in the area but have a desire to understand how things work.

This course will provide an introduction to the Fourier transform. The first section is a review of the mathematics core to understanding Fourier integrals. We will review trigonometric functions, derivatives, integrals, and power series - both exponential and complex exponential. The course will not focus on complicated details and will instead concentrate on the basic skills required.

The second section will begin to introduce Integral Fourier transform. We will dive into the properties of Fourier transform as well as their application to engineering and communication challenges. Here, we will cover convolution, cross-correlation, modulation, demodulation, and more.

The goal of the class is to provide fundamental knowledge that can be applied to the analysis of linear systems, filtering, sampling, and some of the more advanced topics in signal processing. The course includes slides, two problem sets, and their solutions in an Adobe Acrobat file.

Discrete Fourier Transform and signal processing examples in Matlab are covered in a separate course "Discrete Fourier Transform and Spectral Analysis (MATLAB)"

Who this course is for
Engineering and physics students/professionals with an interest in electrical engineering, mechanical engineering, or the biomedical sciences.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction