* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Recommendation Engine Bootcamp with 3 Capstone Projects  (Lida 102 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115741
  • Karma: +0/-0
Recommendation Engine Bootcamp with 3 Capstone Projects
« em: 24 de Junho de 2021, 07:34 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 59 lectures (3h 1m) | Size: 2.77 GB
Master recommendation systems Industry Projects using using modern recommendation techniques and methodologies

What you'll learn:
Learn about the different types of Recommender Systems
Learn about Content based recommendation system
Learn about Collaborative based filtering
Learn about Singular Value Decomposition
Learn recommending movies, books using the recommendation system
Learn about Surprise Library for recommendation systems

Requirements
Good knowledge of Python programming
Knowledge of Probability and Statistics concepts
Knowledge of Machine Learning Algorithms

Description
Welcome to the best online course on Recommendation Engine.

Master various recommendation engines including Content based filtering, collaborative filtering, Singular value decomposition.

Recommender systems aim to predict users' interests and recommend product items that quite likely are interesting for them.

A recommendation engine is a type of data filtering tool using machine learning algorithms to recommend the most relevant items to a particular user or customer.

It operates on the principle of finding patterns in consumer behavior data, which can be collected implicitly or explicitly.

This course gives you a thorough understanding of the Recommendation systems.

In this course, you will cover

Use cases of recommender systems.

Content-based filtering.

Filtering movies based on genres.

User-based collaborative filtering.

Item-based collaborative filtering.

Singular value decomposition using Surprise library.

Not only this, you will also work on three very exciting projects.

You will learn to create a movie recommendation engine as well as a book recommendation engine and Open job analyzer system.

It will be fun working on such exciting projects.

You will see how easy it is to recommend new books or movies based on the user's past preferences.

I guarantee you will love this course.

All the resources used in this course will be shared with you.

Who this course is for
Data Analysts
Data Scientists


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction