* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Complete NumPy course with applications 2021 - Python  (Lida 67 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Complete NumPy course with applications 2021 - Python
« em: 17 de Junho de 2021, 10:32 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 12 lectures (1h 41m) | Size: 523.9 MB
Master Python's central data science and scientific computing library: NumPy

What you'll learn:
How to solve math / statistics problems using NumPy.
Perform the most common array manipulation operations in Machine Learning / Data Science.
Solve problems common to linear algebra, statistics and image processing using the NumPy library.

Requirements
Basic notions of Python programming.

Description
In this course you will learn to use the NumPy library fluently. NumPy is a numerical computation library extensively used in data science, machine learning and statistics. In fact, many other libraries in these fields rely on NumPy arrays to deliver their functionality efficiently. In the area of data science and machine learning we often work with tabular data, which can be represented very well by NumPy arrays. In the course you will learn how to work with n-dimensional arrays and how to manipulate them comfortably to solve complex tasks in different domains.

NumPy processes matrix operations extremely efficiently, offering low execution time and memory usage. Its functionality is implemented in the C programming language: a very efficient compiled language. This functionality is executed from the Python interface with a simple declarative syntax.

The course is divided into 12 lessons:

- Introduction to the NumPy library.

- Creating, indexing and slicing NumPy arrays.

- Copying and editing NumPy arrays.

- Stacking and restructuring NumPy arrays.

- Arithmetic operations with NumPy arrays.

- Operations with NumPy arrays of different shapes.

- Concatenation, reversion and persistence of NumPy arrays.

- Applications of NumPy - Random number generation

- Applications of NumPy - Statistics

- Applications of NumPy - Linear algebra

- Applications of NumPy - Image manipulation

- Applications of NumPy - Chaotic dynamical systems

At the end of the course, you will know how to create arrays using different methods, manipulate them and perform mathematical operations with them.

Who this course is for
Data science students.
Professionals of any scientific or engineering discipline.
Programmers interested in machine learning.
Data analysts interested in expanding their knowledge.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction