* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33

Autor Tópico: Data analyzing and Machine Learning Hands-on with KNIME  (Lida 139 vezes)

0 Membros e 2 Visitantes estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115575
  • Karma: +0/-0
Data analyzing and Machine Learning Hands-on with KNIME
« em: 11 de Novembro de 2020, 16:02 »

Data analyzing and Machine Learning Hands-on with KNIME
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 2.28 GB
Genre: eLearning Video | Duration: 48 lectures (4 hour, 3 mins) | Language: English
 Hands-on crash course guiding through codeless, user-friendly, free data science software KNIME Analytics Platform

What you'll learn

    create machine learning models in Knime Analytics Platform from A to Z - classification and regression
    create machine learning models - Regression (simple linear, multilinear, polynomial, decision tree, random forest, gradient booster)
    create machine learning models - Classification (decision tree, random forest, naive bayes, KNN, gradient booster)
    prepare the data for the machine learning predictive model by using basic manipulating KNIME nodes
    Evaluate the performance of the machine learning predictions (confusion matrix, accuracy ratio, scatter Description)
    work with several different file's data sources at one place
    work with the workflow files and Knime nodes
    acquire data into the Knime workflow
    manipulate the data by using basic Knime nodes
    visualize the data by using Descriptions and statistics Knime nodes
    understand the basic theory of the machine learning
    install and understand the Knime Analytics Platform environment
    find help and advice when working with Knime

Requirements

    access to computer or laptop with Windows (32bit or 64 bit), Linux (64bit) or Mac (64bit) and with permission to download softwares (if not, ask your administrator to download it for you - it is common at company´s computers)
    no prior knowledge required
    basic data analyzing experience in different programs, like MS Excel or SQL or Python etc. is added advantage

Description

The goal of this course is to gain knowledge how to use open source Knime Analytics Platform for data analysis and machine learning predictive models on real data sets.

The course has two main sections:

1. PRE-PROCESSING DATA: MODELING AND VISUALIZING DATA FRAMES IN GENERAL

In this part we will cover the operations how to model, transform and prepare data frames and visualize them, mainly:

    table transformation (merging data, table information, transpose, group by, pivoting etc.)

    row operations (eg. filter)

    column operations (filtering, spiting, adding, date information,  missing values, adding binners, change data types, do basic math operations etc.)

    data visualization (column chart, line Description, pie chart, scatter Description, box Description)

2.  MACHINE LEARNING - REGRESSION AND CLASSIFICATION: We will create machine learning models within the standard machine learning process way, which consists from:

    acquiring data by reading nodes into the KNIME software (the data frames are available in this course for download)

    pre-processing and transforming data to get well prepared data frame for the prediction

    visualizing data with KNIME visual nodes (we will create basic Descriptions and charts to have clear picture about our data)

    creating machine learning predictive models and evaluating them:

          1. Decision Tree Classification

          2. Simple linear Regression

          3. Decision Tree Regression

          4. Random Forest Regression

          5. Random Forest Classification

          6. Polynomial Regression

          7. Naive Bayes

          8. K nearest neighbors

          9. Gradient booster Regression

        10. Gradient booster Classification

models 3 - 10 were added in the end of 2019.

I will also explain the Knime Analytics Platform environment, guide you through the installation , and show you where to find help and hints.

The course was done in KNIME analytics platform version 3.x (there can be minor differences in few nodes in comparison with 4.x version)

Who this course is for:

    anyone searching user-friendly, easily understandable and highly useful tool for data analyzing and machine learning tasks without necessity to have programming skills
    people working with several data sources of different file types
    people working with data - both small and big data
    anyone excited in learning new things in the data science field
                                                                                                                                                                                                           people willing to learn and use new modern tools for data analyzing and machine learning

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction