* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    Hoje às 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    Hoje às 08:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28

Autor Tópico: Modern Reinforcement Learning: Actor-Critic Methods  (Lida 96 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115513
  • Karma: +0/-0
Modern Reinforcement Learning: Actor-Critic Methods
« em: 19 de Outubro de 2020, 12:23 »

Modern Reinforcement Learning: Actor-Critic Methods
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 3.47 GB
Genre: eLearning Video | Duration: 58 lectures (8 hour, 10 mins) | Language: English
 How to Implement Cutting Edge Artificial Intelligence Research Papers in the Open AI Gym Using the PyTorch Framework

What you'll learn

    How to code policy gradient methods in PyTorch
    How to code Deep Deterministic Policy Gradients (DDPG) in PyTorch
    How to code Twin Delayed Deep Deterministic Policy Gradients (TD3) in PyTorch
    How to code actor critic algorithms in PyTorch
    How to implement cutting edge artificial intelligence research papers in Python

Requirements

    Understanding of college level calculus
    Prior courses in reinforcement learning
    Able to code deep neural networks independently

Description

In this advanced course on deep reinforcement learning, you will learn how to implement policy gradient, actor critic, deep deterministic policy gradient (DDPG), and twin delayed deep deterministic policy gradient (TD3) algorithms in a variety of challenging environments from the Open AI gym.

The course begins with a practical review of the fundamentals of reinforcement learning, including topics such as:

    The Bellman Equation

    Markov Decision Processes

    Monte Carlo Prediction

    Monte Carlo Control

    Temporal Difference Prediction TD(0)

    Temporal Difference Control with Q Learning

And moves straight into coding up our first agent: a blackjack playing artificial intelligence. From there we will progress to teaching an agent to balance the cart pole using Q learning.

After mastering the fundamentals, the pace quickens, and we move straight into an introduction to policy gradient methods. We cover the REINFORCE algorithm, and use it to teach an artificial intelligence to land on the moon in the lunar lander environment from the Open AI gym. Next we progress to coding up the one step actor critic algorithm, to again beat the lunar lander.

With the fundamentals out of the way, we move on to our harder projects: implementing deep reinforcement learning research papers. We will start with Deep Deterministic Policy Gradients, which is an algorithm for teaching robots to excel at a variety of continuous control tasks.

Finally, we implement a state of the art artificial intelligence algorithm: Twin Delayed Deep Deterministic Policy Gradients. This algorithm sets a new benchmark for performance in robotic control tasks, and we will demonstrate world class performance in the Bipedal Walker environment from the Open AI gym.

By the end of the course, you will know the answers to the following fundamental questions in Actor-Critic methods:

    Why should we bother with actor critic methods when deep Q learning is so successful?

    Can the advances in deep Q learning be used in other fields of reinforcement learning?

    How can we solve the explore-exploit dilemma with a deterministic policy?

    How do we get overestimation bias in actor-critic methods?

    How do we deal with the inherent errors in deep neural networks?

This course is for the highly motivated and advanced student. To succeed, you must have prior course work in all the following topics:

    College level calculus

    Reinforcement learning

    Deep learning

The pace of the course is brisk, but the payoff is that you will come out knowing how to read cutting edge research papers and turn them into functional code as quickly as possible.

Who this course is for:

    Advanced students of artificial intelligence who want to implement state of the art academic research papers

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction