* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Data Cleaning in Python  (Lida 206 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Data Cleaning in Python
« em: 25 de Abril de 2020, 10:13 »

Data Cleaning in Python
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 48000 Hz, 2ch | Size: 750 MB
Genre: eLearning Video | Duration: 196 lectures (1 hour, 57 mins) | Language: English

Preprocessing, structuring and normalizing data

What you'll learn

    Data cleaning or cleansing as a preprocessing step towards making the data more consistent and high quality before training predictive models.

Requirements

    Basics of Python

Description

Data cleaning or Data cleansing is very important from  machine learning perspective. The term 'garbage in garbage out' refers to the same fact that without sorting what we have in the data and how to make it more presentable, no matter how good a predictive model is used, the results aren't going to be anything reliable. Beginners with machine learning starts working with the publicly available datasets that are thoroughly analyzed with such issues and are therefore, ready to be used for training models and getting good results. But it is far from how the data is in real world. The datasets that are in raw form and have all such issues cannot be benefited from, without knownig the data cleaning and preprocessing steps.

Such issues may include missing values, noise values or univariate outliers, multivariate outliers, data duplication, improving the quality of data through standardizing and normalizing it, dealing with categorical features. Visualization also happens to be an important tool for manually observing issues in the data.

In this course, we discuss the issues with data coming from different courses and how to resolve them handsomely. Each concept has three components that are theoretical explanation, mathematical evaluation and code. The lectures *.1.* refers to the theory and mathematical evaluation of a concept while the lectures *.2.* refers to the practical code of each concept. All the codes are written in Python using Jupyter Notebook.

Who this course is for:

    The target students are beginners to data science and machine learning.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction