* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom feriado   4tj97u<z
    01 de Novembro de 2024, 10:39
  • JPratas: try65hytr Pessoal  h7ft6l k7y8j0
    01 de Novembro de 2024, 03:51
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09

Autor Tópico: Modern Natural Language Processing in Python  (Lida 122 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115487
  • Karma: +0/-0
Modern Natural Language Processing in Python
« em: 10 de Abril de 2020, 14:04 »

Modern Natural Language Processing in Python
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.83 GB
Genre: eLearning Video | Duration: 37 lectures (5 hour, 46 mins) | Language: English

Solve Seq2Seq and Classification NLP tasks with Transformer and CNN using Tensorflow 2 in Google Colab

What you'll learn

    Build a Transformer, new model created by Google, for any sequence to sequence task (e.g. a translator)
    Build a CNN specialized in NLP for any classification task (e.g. sentimental analysis)
    Write a custom training process for more advanced training methods in NLP
    Create customs layers and models in TF 2.0 for specific NLP tasks
    Use Google Colab and Tensorflow 2.0 for your AI implementations
    Pick the best model for each NLP task
    Understand how we get computers to give meaning to the human language
    Create datasets for AI from those data
    Clean text data
    Understand why and how each of those models work
    Understand everything about the attention mechanism, lying behind the newest and most powerful NLP algorithms

Requirements

    PC with Internet connection
    Python Programming Skills
    Recommended: Experience with TF2.0
    Recommended: Google Collab

Description

Modern Natural Language Processing course is designed for anyone who wants to grow or start a new career and gain a strong background in NLP.

Nowadays, the industry is becoming more and more in need of NLP solutions. Chatbots and online automation, language modeling, event extraction, fraud detection on huge contracts are only a few examples of what is demanded today. Learning NLP is key to bring real solutions to the present and future needs.

Throughout this course, we will leverage the huge amount of speech and text data available online, and we will explore the main 3 and most powerful NLP applications, that will give you the power to successfully approach any real-world challenge.

    First, we will dive into CNNs to create a sentimental analysis application.

    Then we will go for Transformers, replacing RNNs, to create a language translation system.

The course is user-friendly and efficient: Modern NL leverages the latest technologies-Tensorflow 2.0 and Google Colab-assuring you that you won't have any local machine/software version/compatibility issues and that you are using the most up-to-date tools.

Who this course is for:

    AI amateurs that are eager to learn how we process language nowadays
    AI students that need to have a deeper and wider knowledge about NLP
    Business driven people that are eager to know how NLP can be applied to their field to leverage any text data
    Anyone who wants to start a new career and get a strong background in NLP, adding efficient cases to their portfolio
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction