* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    Hoje às 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    08 de Outubro de 2025, 11:44
  • joca34: ola amigos boas noite alguem este cd Disco Festa Portuguesa (Ao Vivo)
    07 de Outubro de 2025, 22:45
  • pxsofficial: alguem ainda tem o Mega Pack de Filmes Infantis Dublados PT-PT
    07 de Outubro de 2025, 21:22

Autor Tópico: Machine Learning for Beginners Linear Regression Model in R  (Lida 249 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126013
  • Karma: +0/-0
Machine Learning for Beginners Linear Regression Model in R
« em: 19 de Março de 2020, 06:47 »

Machine Learning for Beginners: Linear Regression Model in R
.MP4, AVC, 1364x768, 30 fps | English, AAC, 2 Ch | 6h 13m | 1.92 GB
Created by Start-Tech Academy

Get up to speed with linear regression analysis for predictive machine learning and econometrics

Learn

Identify the business problem and solve it using linear regression techniques
Create a linear regression model in R and analyze its results
Become well-versed with machine learning concepts
Gain knowledge of data collection and data preprocessing for machine learning linear regression problems
Explore advanced linear regression techniques using R's glmnet package

About

Are you looking for a complete linear regression course that teaches you everything you need to create a linear regression model in R? This course covers the important aspects that you need to know to solve business problems through linear regression.

Although most courses only focus on teaching how to run the analysis, this course emphasizes what happens before and after analysis such as having the right data and performing preprocessing on it. You'll also be able to judge how good your model is and interpret the results to help your business. As you progress, you will learn how to identify problems in your business and solve them using linear regression techniques. In addition to this, you'll gain the knowledge you need to create a linear regression model in R and analyze its results.

By the end of this course, you will be equipped with the skills you need to effectively use linear regression for predictive machine learning and create robust models.

All codes and supporting files are available at-

Features

Delve into business-specific case studies and datasets
Explore interview tips and performance tuning tips
Gain the knowledge to confidently create your own linear regression model in R
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction