* Cantinho Satkeys

Refresh History
  • yaro-82: 1994
    07 de Setembro de 2025, 16:49
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    07 de Setembro de 2025, 10:52
  • j.s.: tenham um excelente fim de semana  49E09B4F
    06 de Setembro de 2025, 17:07
  • j.s.: dgtgtr a todos  4tj97u<z
    06 de Setembro de 2025, 17:07
  • FELISCUNHA: Boa tarde pessoal  49E09B4F bom fim de semana  htg6454y
    05 de Setembro de 2025, 14:53
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    05 de Setembro de 2025, 03:10
  • cereal killa: dgtgtr pessoal  4tj97u<z
    03 de Setembro de 2025, 15:26
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    01 de Setembro de 2025, 11:36
  • j.s.: de regresso a casa  535reqef34
    31 de Agosto de 2025, 20:21
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Agosto de 2025, 20:21
  • FELISCUNHA: ghyt74   49E09B4e bom fim de semana  4tj97u<z
    30 de Agosto de 2025, 11:48
  • henrike: try65hytr     k7y8j0
    29 de Agosto de 2025, 21:52
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i classic k7y8j0
    29 de Agosto de 2025, 03:57
  • cereal killa: dgtgtr pessoal  2dgh8i
    27 de Agosto de 2025, 12:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    24 de Agosto de 2025, 11:26
  • janstu10: reed
    24 de Agosto de 2025, 10:52
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    23 de Agosto de 2025, 12:03
  • joca34: cd Vem dançar Kuduro Summer 2025
    22 de Agosto de 2025, 23:07
  • joca34: cd Kizomba Mix 2025
    22 de Agosto de 2025, 23:06
  • JPratas: try65hytr A Todos e Boas Férias 4tj97u<z htg6454y k7y8j0
    22 de Agosto de 2025, 04:22

Autor Tópico: Pandas and NumPy Tips, Tricks, and Techniques  (Lida 267 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 124987
  • Karma: +0/-0
Pandas and NumPy Tips, Tricks, and Techniques
« em: 17 de Outubro de 2019, 18:36 »

Pandas and NumPy Tips, Tricks, and Techniques
.MP4, AVC, 1920x1080, 30 fps | English, AAC, 2 Ch | 4h 31m | 1.41 GB
Instructor: Matthew Macarty

Learn

Get a NumPy refresher with lessons you can reuse in general data settings
Take a deeper dive into NumPy to learn how to leverage the power of ndim arrays
Get a pandas functionality refresher covering everyday data handling concepts
Review how to process Excel data quickly and automatically with pandas and re-import into Excel
See how to work with complex data using merging and data-joining with pandas
Discover the functionality of pandas to help you sub-set, split, and aggregate data
Create a Capstone project with NumPy and pandas to produce a data analysis tool for stock prices as a working model

About

This course will empower you with new possibilities using NumPy and pandas that you probably never knew existed, and tips to use them to increase your efficiency and productivity in your daily tasks. Each section will cover key tips, tricks, and techniques for efficient data analysis in NumPy and pandas that you can apply in your own real-world scenarios to increase your output and efficiency. You'll learn how to make your data more meaningful and contextual by adding customization. We'll also cover the new features introduced in NumPy and pandas and leverage them to simplify the way you use them for your data science requirements. By the end of this course, you will be able to get the best out of your code much faster and and more efficiently.

The Github Link to this video course is: github.com/PacktPublishing/Pandas-and-NumPy-Tips-Trick-and-Techniques

Features

Practical and proven techniques focused on the key aspects of pandas and NumPy that can really enhance your daily work
A fast-paced course filled with best practices to help you manage your pandas and NumPy applications efficiently
Easy-to-implement solutions to simplify your day-to-day programming tasks


               
 
Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction