* Cantinho Satkeys

Refresh History
  • cereal killa:
    19 de Abril de 2025, 21:17
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    19 de Abril de 2025, 18:19
  • j.s.:
    19 de Abril de 2025, 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    19 de Abril de 2025, 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10
  • j.s.: try65hytr a todos  4tj97u<z
    04 de Abril de 2025, 21:10
  • FELISCUNHA: dgtgtr pessoal  49E09B4F  bom fim de semana  4tj97u<z
    04 de Abril de 2025, 14:29

Autor Tópico: Data Science, Machine Learning and Deep Learning with Python  (Lida 285 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 119035
  • Karma: +0/-0
Data Science, Machine Learning and Deep Learning with Python
« em: 08 de Outubro de 2019, 17:36 »

Data Science, Machine Learning and Deep Learning with Python
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 44100 Hz, 2ch | 4.21 GB
Duration: 14.5 hours | Genre: eLearning | Language: English
Learn Data Science with Data Parsing, Data Visualization, Data Processing and Supervised Machine Learning, Unsupervised.

What you'll learn

    From beginner level to advanced level understanding of :
    Data Science:(Online Data Parsing, Data visualization, Data Preprocessing, Preparing data for machine learning)
    Machine Learning:(Supervised Machine Learning, Unsupervised Machine Learning, Implementation of algorithms form scratch, Built-in algorithms usages.)
    amitDeep Learning:(Tensorflow, Hyperparameter tunings)
    Working with some data sets which are benchmarks in industry like : Titanic, Seeds, Rock and Mine

Requirements

    Basic Knowledge of any programming language
    Passion of learning

Description

This course focuses on the fundamentals of Data Science, Machine learning and deep learning in the beginning and with the passage of time, the content and lectures become advanced and more practical. But before everything, the introduction of python is discussed. Python is one of the fastest-growing programming languages and if we specifically look from the perspective of Data Science, Machine learning and deep learning, there is no other choice then "python" as a programming language.

First of all, there is a crash course on python for those who are not very good with python and then there is an exercise for python that is supposed to be solved by you but if you feel any difficulty in solving the exercise, the solution is also provided.

Then we moved on towards the Data Science and we start from data parsing using scrapy then the data visualizations by using several libraries of python and finally we end up by learning different data preprocessing techniques. And in the end, there is a complete project that we'll do together.

After that, we'll be learning a few classical and a few advanced machine learning algorithms. Some of them will be implemented from scratch and the others will be implemented by using the builtin libraries of python. At the end of every algorithm, there will be a mini-project.

Finally, Deep learning will be discussed, the basic structure of an artificial neural network and it's implementation in TensorFlow followed by a complete deep learning-based project. And in the end, some hyperparameter tuning techniques will be discussed that'll improve the performance of the model.

Who this course is for:

    Those who are interested in Artificial Intelligence
    Those who have basic level of understanding of english
    Those who have basic knowledge of any programming language
    Those who have basic knowledge of OOP
    hose who wants to write programs for predictions
    Those who are interested in making automated computer programs
    Those who wants to unlock the future of IT that is AI
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction