* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    02 de Novembro de 2025, 11:58
  • j.s.: tenham um excelente domingo  49E09B4F
    02 de Novembro de 2025, 11:27
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2025, 11:26
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    01 de Novembro de 2025, 11:04
  • JPratas: try65hytr Pessoal  2dgh8i classic k7y8j0 yu7gh8
    31 de Outubro de 2025, 04:19
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2025, 18:51
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    30 de Outubro de 2025, 11:38
  • haruri: Delta
    29 de Outubro de 2025, 07:54
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    25 de Outubro de 2025, 12:03
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    24 de Outubro de 2025, 03:28
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    19 de Outubro de 2025, 11:16
  • j.s.: tenham um excelente domingo  43e5r6 49E09B4F
    19 de Outubro de 2025, 10:32
  • j.s.: ghyt74 a todos  4tj97u<z
    19 de Outubro de 2025, 10:32
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Outubro de 2025, 12:08
  • JPratas: try65hytr Pessoal  4tj97u<z htg6454y k7y8j0
    17 de Outubro de 2025, 03:34
  • j.s.: dgtgtr a todos  4tj97u<z
    15 de Outubro de 2025, 15:12
  • FELISCUNHA: ghyt74  pessoal  49E09B4F
    15 de Outubro de 2025, 11:56
  • Radio TugaNet: boas tardes
    14 de Outubro de 2025, 13:14
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    11 de Outubro de 2025, 12:06
  • JPratas: try65hytr Pessoal  49E09B4F 2dgh8i k7y8j0 yu7gh8
    10 de Outubro de 2025, 03:59

Autor Tópico: Deploying PyTorch Models in Production PyTorch Playbook  (Lida 290 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 126169
  • Karma: +0/-0
Deploying PyTorch Models in Production PyTorch Playbook
« em: 07 de Agosto de 2019, 17:27 »

Deploying PyTorch Models in Production: PyTorch Playbook
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2 Hours 13M | 216 MB
Genre: eLearning | Language: English

This course covers the important aspects of performing distributed training of PyTorch models, using the multiprocessing, data-parallel and distributed data-parallel approaches. It also discusses which you can host PyTorch models for prediction.

PyTorch is fast emerging as a popular choice for building deep learning models owing to its flexibility, ease-of-use and built-in support for optimized hardware such as GPUs. Using PyTorch, you can build complex deep learning models, while still using Python-native support for debugging and visualization. In this course, Deploying PyTorch Models in Production: PyTorch Playbook you will gain the ability to leverage advanced functionality for serializing and deserializing PyTorch models, training and then deploying them for prediction. First, you will learn how the load_state_dict and the torch.save() and torch.load() methods complement and differ from each other, and the relative pros and cons of each. Next, you will discover how to leverage the state_dict which is a handy dictionary with information about parameters as well as hyperparameters. You will then see how the multiprocessing, data-parallel, and distributed data-parallel approaches to distributed training can be used in PyTorch. You will train a PyTorch model on a distributed cluster using high-level estimator APIs. Finally, you will explore how to deploy PyTorch models using a Flask application, a Clipper cluster, and a serverless environment. When you're finished with this course, you will have the skills and knowledge to perform distributed training and deployment of PyTorch models and utilize advanced mechanisms for model serialization and deserialization.
       

               
 
Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction