* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    16 de Outubro de 2024, 01:41

Autor Tópico: Mining Data from Text  (Lida 241 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115290
  • Karma: +0/-0
Mining Data from Text
« em: 29 de Junho de 2019, 12:35 »

Mining Data from Text
.MP4, AVC, 1280x720, 30 fps | English, AAC, 2 Ch | 2h 21m | 388 MB
Instructor: Janani Ravi

This course discusses text and document feature vectors that can be passed into machine learning models, topic modeling using Latent Semantic Analysis, Latent Dirichlet Allocation, Non-negative Matrix Factorization, and keyword extraction using RAKE.

A large part of the appeal of deep learning models is their ability to work with unstructured data types such as text, images, and video. However such models are only as good as the feature vectors that they operate on. In this course, Mining Data from Text, you will gain the ability to build highly optimized and efficient feature vectors from textual and document data. First, you will learn how to represent documents as numeric data using simple numeric identifiers for individual words as well as more elegant methods such as term frequency and inverse document frequency. Next, you will discover how to perform topic modeling using techniques such as latent semantic analysis, latent Dirichlet allocation, and non-negative matrix factorization. Finally, you will explore how to implement keyword extraction using a popular algorithm - RAKE. When you're finished with this course, you will have the skills and knowledge to move on to build efficient and optimized feature vectors from a large document corpus and use those feature vectors in building powerful machine learning models.
             

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction