* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  4tj97u<z
    30 de Outubro de 2024, 21:00
  • JPratas: dgtgtr Pessoal  4tj97u<z k7y8j0
    28 de Outubro de 2024, 17:35
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  k8h9m
    27 de Outubro de 2024, 11:21
  • j.s.: bom fim de semana   49E09B4F 49E09B4F
    26 de Outubro de 2024, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    26 de Outubro de 2024, 17:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana
    26 de Outubro de 2024, 11:49
  • JPratas: try65hytr Pessoal  101yd91 k7y8j0
    25 de Outubro de 2024, 03:53
  • JPratas: dgtgtr A Todos  4tj97u<z 2dgh8i k7y8j0
    23 de Outubro de 2024, 16:31
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    23 de Outubro de 2024, 10:59
  • j.s.: dgtgtr a todos  4tj97u<z
    22 de Outubro de 2024, 18:16
  • j.s.: dgtgtr a todos  4tj97u<z
    20 de Outubro de 2024, 15:04
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    20 de Outubro de 2024, 11:37
  • axlpoa: hi
    19 de Outubro de 2024, 22:24
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    19 de Outubro de 2024, 11:31
  • j.s.: ghyt74 a todos  4tj97u<z
    18 de Outubro de 2024, 09:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Outubro de 2024, 03:28
  • schmeagle: iheartradio
    17 de Outubro de 2024, 22:58
  • j.s.: dgtgtr a todos  4tj97u<z
    17 de Outubro de 2024, 18:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    17 de Outubro de 2024, 09:09
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    16 de Outubro de 2024, 01:41

Autor Tópico: Scalable Data Analysis in Python with Dask  (Lida 299 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 115290
  • Karma: +0/-0
Scalable Data Analysis in Python with Dask
« em: 24 de Junho de 2019, 14:25 »

Scalable Data Analysis in Python with Dask
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 3.5 Hours | 1.08 GB
Genre: eLearning | Language: English

Data analysts, Machine Learning professionals, and data scientists often use tools such as Pandas, Scikit-Learn, and NumPy for data analysis on their personal computer. However, when they want to apply their analyses to larger datasets, these tools fail to scale beyond a single machine, and so the analyst is forced to rewrite their computation.

If you work on big data and you're using Pandas, you know you can end up waiting up to a whole minute for a simple average of a series. And that's just for a couple of million rows!

In this course, you'll learn to scale your data analysis. Firstly, you will execute distributed data science projects right from data ingestion to data manipulation and visualization using Dask. Then, you will explore the Dask framework. After, see how Dask can be used with other common Python tools such as NumPy, Pandas, matDescriptionlib, Scikit-learn, and more.

You'll be working on large datasets and performing exploratory data analysis to investigate the dataset, then come up with the findings from the dataset. You'll learn by implementing data analysis principles using different statistical techniques in one go across different systems on the same massive datasets.

Throughout the course, we'll go over the various techniques, modules, and features that Dask has to offer. Finally, you'll learn to use its unique offering for machine learning, using the Dask-ML package. You'll also start using parallel processing in your data tasks on your own system without moving to the distributed environment.

All the code files and related files are uploaded on GitHub at this link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction