* Cantinho Satkeys

Refresh History
  • j.s.: [link]
    Hoje às 16:31
  • j.s.: dgtgtr a todos  4tj97u<z
    Hoje às 16:31
  • j.s.: h7t45 ao convidado de Honra batatinha pela sua ajuda
    Hoje às 16:30
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33

Autor Tópico: Analyzing Data With Polars in Python  (Lida 79 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Analyzing Data With Polars in Python
« em: 31 de Outubro de 2023, 07:46 »


Analyzing Data With Polars in Python
Published 10/2023
Created by Joram Mutenge
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 48 Lectures ( 3h 8m ) | Size: 2.44 GB
Speed Up your Data Analysis with the New Lightning-Fast DataFrame Library

What you'll learn
Work with large datasets that exceed memory capacity.
Take advantage of parallel and optimized data analysis using Polars.
Utilize Polars expressions syntax that's easy to read and write.
Load data from various sources, including web-based files, Excel, JSON, and Parquet files.
Combine data from different datasets efficiently using fast join operations.
Perform grouping and parallel aggregations for in-depth analysis.
Derive valuable insights from time series data.
Requirements
A computer running Windows, Linux, or MacOS with Python installed.
A curious mind and willingness to learn.
Description
Speed up your data analysis with Polars, the rapidly growing open-source dataframe library that's gaining popularity among Python data scientists. This comprehensive course is your gateway to harnessing the power of Polars.What You Will Learn:- Introduction: Get started with a warm welcome and learn how to set up your environment by installing Polars and essential libraries. Discover why Polars is becoming the preferred choice for data scientists.- Core Concepts: Gain a solid foundation by exploring key concepts, including Series and DataFrames. Understand how Polars simplifies data analysis and manipulation.- Data Transformation: Dive into practical data manipulation. Learn how to filter rows and columns, update data, and add new columns and rows efficiently.- Data Types and Missing Values: Master the art of handling data types, precision, and missing values. Discover how Polars supports various data types, including string and categorical, and tackle nested data structures.- Text Transformation: Unlock the secrets of text manipulation using Polars. Format, replace, slice, filter, and split text with ease.- Statistics and Aggregations: Learn how to perform statistical analysis and aggregations. Count values, group data, and calculate quantiles to gain deeper insights.- Combining Dataframes: Explore the world of data integration by concatenating DataFrames and executing left and inner joins efficiently.- Timeseries (Dates and Time): Delve into timeseries data with Polars. Understand time zones, parse datetime strings, and extract datetime components. Perform operations on timeseries data and group it effectively.- Input and Output: Master data import and export with Polars. Read data from various sources, select and name columns, and write data to disk.Who This Course Is For:- Data analysts seeking to break free from the constraints of traditional spreadsheets and eager to embrace a more agile and efficient data analysis tool.- Data scientists new to Polars who want to quickly get up and running with this powerful dataframe library.- Users of Pandas or other dataframe libraries who want to explore a faster and more efficient data analysis tool.This course prioritizes hands-on learning through Jupyter notebooks, providing in-depth coverage of each topic. All code shown in the video is included as Jupyter notebooks. By the end of this course, you'll be equipped to optimize data loading, manipulation, and analysis, making you a proficient Polars data analyst ready to tackle real-world data challenges.
Who this course is for
Data analysts seeking to break free from the constraints of traditional spreadsheets and eager to embrace a more agile and efficient data analysis tool.
Data scientists new to Polars who want to quickly get up and running with this powerful dataframe library.
Users of Pandas or other dataframe libraries who want to explore a faster and more efficient data analysis tool.

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/86e5bb2707aad97c91d6805e15009aff/gqqoa.Analyzing.Data.With.Polars.in.Python.part1.rar.html
https://rapidgator.net/file/6557878d015d3c4af3fc4a3376418726/gqqoa.Analyzing.Data.With.Polars.in.Python.part2.rar.html
https://rapidgator.net/file/d8c7c9a444b34ac4e23636cb1a159837/gqqoa.Analyzing.Data.With.Polars.in.Python.part3.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/98bffd956bFd6Df9/gqqoa.Analyzing.Data.With.Polars.in.Python.part1.rar
https://uploadgig.com/file/download/2f5a50C26ffc523c/gqqoa.Analyzing.Data.With.Polars.in.Python.part2.rar
https://uploadgig.com/file/download/82744C20c2868c93/gqqoa.Analyzing.Data.With.Polars.in.Python.part3.rar

nitroflare.com:
Citar
https://nitroflare.com/view/3DD6E81A0758241/gqqoa.Analyzing.Data.With.Polars.in.Python.part1.rar
https://nitroflare.com/view/C5976A32B4BF647/gqqoa.Analyzing.Data.With.Polars.in.Python.part2.rar
https://nitroflare.com/view/17810C98AA70ECF/gqqoa.Analyzing.Data.With.Polars.in.Python.part3.rar