* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    04 de Julho de 2025, 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33
  • FELISCUNHA: try65hytr  pessoal   htg6454y
    26 de Junho de 2025, 21:33
  • JPratas: try65hytr Pessoal  4tj97u<z
    26 de Junho de 2025, 02:28
  • cereal killa: Boa Tarde Pessoal E com enorme tristeza que depois de 15 anos que idealizei e abri este fórum vejo que esta na iminência de fechar portas porque ninguém tenta ajudar o pagamento do servidor, mas cada ano e sempre difícil arranjar almas caridosas que nos bom ajudando mas este ano esta complicado, mas infelizmente e como diz o j.s dia 5/07 se não houver algumas ajudas esta vez vai mesmo fechar…..e pena e triste mas tudo na vida tem fim. obrigada cereal killa
    25 de Junho de 2025, 19:40

Autor Tópico: Beginning with Machine Learning & Data Science in Python  (Lida 300 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Beginning with Machine Learning & Data Science in Python
« em: 29 de Maio de 2019, 19:39 »

Beginning with Machine Learning & Data Science in Python
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 48000 Hz, 2ch | 542 MB
Duration: 3.5 hours | Genre: eLearning Video | Language: English
Fundamentals of Data Science : Exploratory Data Analysis (EDA), Regression (Linear & logistic), Visualization, Basic ML.

What you'll learn

    You will be able to apply data science algorithms for solving industry problems
    You will have a clear understanding of industry standards and best practices for predictive model building
    You will be able to derive key insights from data using exploratory data analysis techniques
    You will be able to efficiently handle data in a structured way using Pandas
    You will have a strong foundation of linear regression, multiple regression and logistic regression
    You will be able to use python scikit-learn for building different types of regression models
    You will be able to use cross validation techniques for comparing models, select parameters
    You will know about common pitfalls in modeling like over-fitting, bias-variance trade off etc..
    You will be able to regularize models for reliable predictions

Requirements

    Basic programming in any language
    Basic Mathematics
    Some exposure to Python (but not mandatory)

Description
85% of data science problems are solved using exploratory data analysis (EDA), visualization, regression (linear & logistic). Naturally, 85% of the interview questions comes from these topics as well.

This is a concise course created by UNP to focus on what matter most. This course will help you create a solid foundation of the essential topics of data science. With a solid foundation, you will be able to go a long way, understand any method easily, and create your own predictive analytics models.

At the end of this course, you will be able to:

    Get your hands dirty by building machine learning models

    Master logistic and linear regression, the workhorse of data science

    Build your foundation for data science

    Fast-paced course with all the basic & intermediate level concepts

    Learn to manage data using standard tools like Pandas

This course is designed to get students on board with data science and make them ready to solve industry problems. This course is a perfect blend of foundations of data science, industry standards, broader understanding of machine learning and practical applications.

Special emphasis is given to regression analysis. Linear and logistic regression is still the workhorse of data science. These two topics are the most basic machine learning techniques that everyone should understand very well. Concepts of over fitting, regularization etc. are discussed in details. These fundamental understandings are crucial as these can be applied to almost every machine learning methods.

This course also provide an understanding of the industry standards, best practices for formulating, applying and maintaining data driven solutions. It starts off with basic explanation of Machine Learning concepts and how to setup your environment. Next data wrangling and EDA with Pandas are discussed with hands on examples. Next linear and logistic regression is discussed in details and applied to solve real industry problems. Learning the industry standard best practices and evaluating the models for sustained development comes next.

Final learning are around some of the core challenges and how to tackle them in an industry setup. This course supplies in-depth content that put the theory into practice.

Who this course is for:

    Anyone willing to take the first step                                                                                                                                                                                                towards data science
    Anyone willing to develop a solid foundation for data science
    Anyone planning to build the first regression / machine learning models
    Anyone willing to learn exploratory data analysis
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction