* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr Pessoal  4tj97u<z  htg6454y Bom Feriado  yu7gh8 k7y8j0
    25 de Abril de 2025, 03:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    21 de Abril de 2025, 10:38
  • cereal killa:
    19 de Abril de 2025, 21:17
  • j.s.: tenham uma Santa e Feliz Páscoa  49E09B4F 49E09B4F 49E09B4F
    19 de Abril de 2025, 18:19
  • j.s.:
    19 de Abril de 2025, 18:19
  • j.s.: dgtgtr a todos  4tj97u<z 4tj97u<z
    19 de Abril de 2025, 18:15
  • FELISCUNHA: Uma santa sexta feira para todo o auditório  4tj97u<z
    18 de Abril de 2025, 11:12
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    18 de Abril de 2025, 03:28
  • cereal killa: try65hytr malta  classic 2dgh8i
    14 de Abril de 2025, 23:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    13 de Abril de 2025, 11:45
  • j.s.: e um bom domingo de Ramos  43e5r6 43e5r6
    11 de Abril de 2025, 21:02
  • j.s.: tenham um excelente fim de semana  49E09B4F
    11 de Abril de 2025, 21:01
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Abril de 2025, 21:00
  • JPratas: try65hytr  y5r6t Pessoal  classic k7y8j0
    11 de Abril de 2025, 04:15
  • JPratas: dgtgtr A Todos  4tj97u<z classic k7y8j0
    10 de Abril de 2025, 18:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    09 de Abril de 2025, 11:59
  • cereal killa: try65hytr pessoal  2dgh8i
    08 de Abril de 2025, 23:21
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  43e5r6
    06 de Abril de 2025, 11:13
  • cccdh: Ola para todos!
    04 de Abril de 2025, 23:41
  • j.s.: tenham um excelente fim de semana  49E09B4F
    04 de Abril de 2025, 21:10

Autor Tópico: Applied Bayesian Analysis With R  (Lida 33 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 119518
  • Karma: +0/-0
Applied Bayesian Analysis With R
« em: 06 de Novembro de 2024, 08:46 »
Applied Bayesian Analysis With R


Published 11/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 494.88 MB | Duration: 1h 12m

An accessible introduction to Bayesian statistical modeling

What you'll learn
Learn the difference between frequentist and bayesian approaches
Gain confidence with the bayesian workflow in R
Learn how to specify a variety of Bayesian models
Leverage bayesian regression for predictive modeling
Requirements
Basic familiarity with R and statistical inference
Description
This course provides a comprehensive, hands-on approach to Bayesian statistics, focusing on fundamental concepts and practical applications using R. Designed for beginners and those with some statistical background, this course will guide you through the core principles of Bayesian analysis, allowing you to understand and apply these methods to real-world data.Course StructureLecture 1: Why Bayes? Introduction and WelcomeWe start with a fundamental question: Why Bayesian statistics? This lecture introduces the advantages of Bayesian thinking, contrasting it with frequentist methods to highlight how Bayesian analysis provides a flexible, intuitive approach to data. This session sets the stage for understanding the Bayesian perspective and what you can expect to gain from this course.Lecture 2: R Setup for Bayesian StatisticsIn this session, we'll set up R for Bayesian analysis, covering essential packages and libraries, and walk through basic commands for data manipulation and visualization. By the end, you'll be equipped with the tools needed to dive into Bayesian modeling.Lecture 3: The Bayesian Trinity: Priors, Likelihood, and PosteriorsHere, we explore the three central components of Bayesian analysis: priors, likelihood, and posteriors. We'll discuss how these elements interact to shape Bayesian inference and will use R to visualize how prior beliefs combine with data to form posterior distributions.Lecture 4: Bayesian Regression in RThis lecture delves into Bayesian regression, covering linear models in a Bayesian framework. You'll learn how to specify priors, compute posterior distributions, and interpret results, building on classical regression knowledge to gain a Bayesian perspective.Lecture 5: Logistic Regression and PredictionsExpanding on regression techniques, this session introduces Bayesian logistic regression, ideal for binary outcomes and classification. You'll learn to make probabilistic predictions and understand uncertainty, essential for interpreting results in Bayesian analysis.Lecture 6: Diagnostics and VisualizationDiagnostics are critical for ensuring model reliability. This lecture covers methods for evaluating model fit, assessing convergence, and visualizing posterior distributions. We'll use R's plotting tools to gain insight into model behavior, helping you detect and address potential issues.Lecture 7: Practical Tips and ConclusionsIn our final lecture, we'll discuss practical tips for successful Bayesian analysis, including choosing priors, understanding model limitations, and interpreting results. We'll review key takeaways and best practices, equipping you with a well-rounded foundation to apply Bayesian methods confidently.This course is designed to be interactive, providing hands-on exercises to reinforce concepts and develop practical skills in Bayesian statistics using R. By the end, you'll have the tools and knowledge to apply Bayesian thinking to real-world data analysis challenges confidently. Welcome, and let's begin our Bayesian journey!
Overview
Section 1: Introduction
Lecture 1 Why Bayes? Introduction and Welcome
Lecture 2 Bayes Theorem
Lecture 3 Bayesian Priors in Detail and a Little About Sampling
Lecture 4 Bayesian Regression in R
Lecture 5 Logistic Regression and Predictions
Lecture 6 Diagnostics and Validation
Lecture 7 Practical Tips and Conclusions
Researchers and analysts seeking to learn applied statistical modeling
Screenshots


Say "Thank You"

rapidgator.net:
Citar
https://rapidgator.net/file/52b629d11ca52562a6cc61d063400007/rrqgz.Applied.Bayesian.Analysis.With.R.rar.html

ddownload.com:
Citar
https://ddownload.com/x7aedc7gsmtr/rrqgz.Applied.Bayesian.Analysis.With.R.rar