* Cantinho Satkeys

Refresh History
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37
  • j.s.: ghyt74 a todos  4tj97u<z
    02 de Novembro de 2024, 08:36

Autor Tópico: Demystifying OWASP Top 10 Large Language Models  (Lida 37 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117301
  • Karma: +0/-0
Demystifying OWASP Top 10 Large Language Models
« em: 04 de Dezembro de 2023, 14:34 »


Demystifying OWASP Top 10 Large Language Models
Published 12/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Language: English | Duration: 1h 6m | Size: 135 MB
Demystifying OWASP Top 10 Large Language Models

What you'll learn
Technology Enthusiasts, Security Professionals, IT, All
OWASP Top 10 for LLM
OWASP Top 10 for LLM
OWASP Top 10 for LLM
Technology Enthusiasts, Security Professionals, IT, All
Requirements
No Requirements
Description
In the rapidly evolving field of artificial intelligence, large language models (LLMs) are becoming increasingly prevalent, powering applications like chatbots, virtual assistants, machine translation systems and many more. However, as with any emerging technology, LLMs introduce unique security risks that need to be addressed.
The OWASP Top 10 LLM Security Risks is a comprehensive framework that outlines the most critical vulnerabilities facing LLM applications today. This training course delves into these risks, providing participants with the knowledge and skills to identify, prevent, and mitigate LLM-related security threats.
Course Overview
Prompt Injection: Exploiting the ability of LLMs to generate text based on user prompts, attackers can inject malicious code or influence the LLM's output.
Insecure Output Handling: Neglecting to validate LLM outputs can lead to downstream security exploits, including code execution that compromises systems and exposes data.
Training Data Poisoning: Introducing biased or malicious data into the training process can manipulate the LLM's behavior, leading to biased or harmful outputs.
Model Denial of Service: Overwhelming the LLM with excessive or malicious inputs can disrupt its normal operation, rendering it unavailable for legitimate users.
Supply Chain Vulnerabilities: Compromising third-party plugins or pre-trained models can introduce vulnerabilities into LLM applications.
Sensitive Information Disclosure: LLMs can unintentionally disclose sensitive information during training or operation, posing privacy risks.
Insecure Plugin Design: Poorly designed plugins can introduce vulnerabilities into LLM applications, allowing unauthorized access or manipulation.
Excessive Agency: Granting too much autonomy to LLMs can lead to unintended consequences and ethical dilemmas.
Overreliance: Relying solely on LLMs for critical decision-making without adequate human oversight can lead to errors and biases.
Model Theft: Stealing or replicating trained LLM models can enable attackers to exploit the model's capabilities for malicious purposes.
Who this course is for
Everybody who wants to learn.

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/6007c756d65a3213e7e36d72cc5e382b/chqoi.Demystifying.OWASP.Top.10.Large.Language.Models.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/6a0f5a143ca8002f/chqoi.Demystifying.OWASP.Top.10.Large.Language.Models.rar

nitroflare.com:
Citar
https://nitroflare.com/view/60FD1D2F7C334E3/chqoi.Demystifying.OWASP.Top.10.Large.Language.Models.rar