* Cantinho Satkeys

Refresh History
  • sacana10: Tenham Um Feliz Ano De 2026
    01 de Janeiro de 2026, 12:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano  4tj97u<z
    01 de Janeiro de 2026, 10:28
  • cereal killa:
    31 de Dezembro de 2025, 19:38
  • JPratas:
    31 de Dezembro de 2025, 18:41
  • j.s.: tenham um excelente ano de 2026 43e5r6 49E09B4F
    31 de Dezembro de 2025, 17:18
  • j.s.: dgtgtr a todos  49E09B4F
    31 de Dezembro de 2025, 17:17
  • FELISCUNHA: ghyt74   49E09B4F  e bom ano de 2026  4tj97u<z
    31 de Dezembro de 2025, 11:55
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 Continuação de Boas Festas vx4s5
    31 de Dezembro de 2025, 06:23
  • m1957: Um excelente ano de 2025 muito próspero!
    30 de Dezembro de 2025, 23:35
  • FELISCUNHA: dgtgtr  e continuação de boas festas  :smiles_natal:
    26 de Dezembro de 2025, 17:56
  • okapa:
    24 de Dezembro de 2025, 19:01
  • sacana10: A todos um feliz natal
    24 de Dezembro de 2025, 17:57
  • cereal killa: dgtgtr passei por ca para vos desejar feliz natal e familias  :smiles_natal:
    24 de Dezembro de 2025, 15:46
  • bruno mirandela: deso a todos um feliz natal
    24 de Dezembro de 2025, 14:31
  • FELISCUNHA: ghyt74   :34rbzg9:  e bom natal  :13arvoresnatalmagiagifs:
    24 de Dezembro de 2025, 10:15
  • tgh12: mikrotik
    24 de Dezembro de 2025, 07:49
  • tgh12: Spanish for Beginners: Spanish from 0 to Conversational
    24 de Dezembro de 2025, 04:57
  • JPratas: try65hytr Pessoal  4tj97u<z
    24 de Dezembro de 2025, 03:03
  • m1957: Para toda a equipa e membros deste fórum, desejo um Natal feliz e que o novo ano de 2026, seja muito próspero a todos os níveis.
    24 de Dezembro de 2025, 00:47
  • FELISCUNHA: Bom dia pessoal   :34rbzg9:
    22 de Dezembro de 2025, 10:35

Autor Tópico: Inverse Physics Informed Neural Networks (I-PINNs)  (Lida 139 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Inverse Physics Informed Neural Networks (I-PINNs)
« em: 01 de Novembro de 2023, 10:19 »


Inverse Physics Informed Neural Networks (I-PINNs)
Published 10/2023
Created by Dr.Mohammad Samara
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 41 Lectures ( 7h 48m ) | Size: 10 GB
Model Physical systems parameters with AI

What you'll learn
Understand the Theory behind PDEs equations solvers.
Build numerical based PDEs solver.
Understand the Theory behind Inverse-PINNs PDEs solvers.
Build an Inverse-PINNs code solver.
Requirements
High School Math
Basic Python knowledge
Description
This comprehensive course is designed to equip you with the skills to effectively utilize Inverse Physics-Informed Neural Networks (IPINNs). We will delve into the essential concepts of solving partial differential equations (PDEs) and demonstrate how to compute simulation parameters through the application of Inverse Physics Informed Neural Networks using data generated by solving PDEs with the Finite Difference Method (FDM).In this course, you will learn the following skills:Understand the Math behind Finite Difference Method.Write and build Algorithms from scratch to sole the Finite Difference Method.Understand the Math behind partial differential equations (PDEs).Write and build Machine Learning Algorithms to solve Inverse-PINNs using Pytorch.Write and build Machine Learning Algorithms to solve Inverse-PINNs using DeepXDE.We will cover:Pytorch Matrix and Tensors Basics.Finite Difference Method (FDM) Numerical Solution for 1D Burgers Equation.Physics-Informed Neural Networks (PINNs) Solution for 1D Burgers Equation.Total variation diminishing (TVD) Method Solution for 1D Burgers Equation.Inverse-PINNs  Solution for 1D Burgers Equation.Inverse-PINNs for 2D Navier Stokes Equation using DeepXDE.If you lack prior experience in Machine Learning or Computational Engineering, worry not. This course is comprehensive and course, providing a thorough understanding of Machine Learning and the essential aspects of partial differential equations PDEs and Inverse Physics Informed Neural Networks IPINNs. Let's enjoy Learning PINNs together
Who this course is for
Engineers and Programmers whom want to Learn Inverse-PINNs

Screenshots


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/5237fc09a99271dbc12a20b6b4ad59cb/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part01.rar.html
https://rapidgator.net/file/9eb37a8f23b0707b2bf048664b299e2e/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part02.rar.html
https://rapidgator.net/file/15153641ed18e8350f1b85b0a065765a/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part03.rar.html
https://rapidgator.net/file/11630ce40fb95e836ef6b76a67f4945a/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part04.rar.html
https://rapidgator.net/file/c4b9ab03a73bcb406f158e04888a663a/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part05.rar.html
https://rapidgator.net/file/e50fb7ab0da6e9c3d8a8d6db55589af6/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part06.rar.html
https://rapidgator.net/file/53cb2ff143219fb7f31708c94f392825/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part07.rar.html
https://rapidgator.net/file/e3f35d8af7d9f23dd8be58ec2fd38e75/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part08.rar.html
https://rapidgator.net/file/dbf586a24025173287c58fa2c62c6b81/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part09.rar.html
https://rapidgator.net/file/cccd8c87e68c5e86c5dbd5e43dda7ebc/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part10.rar.html
https://rapidgator.net/file/42025325aece42cbf85ebeaa1546d237/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part11.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/9cc1A6768852514f/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part01.rar
https://uploadgig.com/file/download/2a573394292eda6E/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part02.rar
https://uploadgig.com/file/download/AF81f4993bC88834/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part03.rar
https://uploadgig.com/file/download/D2443c187b0b52C6/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part04.rar
https://uploadgig.com/file/download/4E4c2d61ca39698f/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part05.rar
https://uploadgig.com/file/download/b6203E1860505909/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part06.rar
https://uploadgig.com/file/download/0784521643fd9d45/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part07.rar
https://uploadgig.com/file/download/cBbF940800fc7556/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part08.rar
https://uploadgig.com/file/download/288b907fcF1658aD/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part09.rar
https://uploadgig.com/file/download/09bd6F6086883d5b/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part10.rar
https://uploadgig.com/file/download/01d4029B4ed6720e/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part11.rar

nitroflare.com:
Citar
https://nitroflare.com/view/4615E69BA8CF423/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part01.rar
https://nitroflare.com/view/240C2C1A90F3846/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part02.rar
https://nitroflare.com/view/43127715293CE85/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part03.rar
https://nitroflare.com/view/8DCF2F7467F3325/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part04.rar
https://nitroflare.com/view/011C641734E5BF8/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part05.rar
https://nitroflare.com/view/AFC2C69FE9EF0E7/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part06.rar
https://nitroflare.com/view/0B6C3968BB10679/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part07.rar
https://nitroflare.com/view/29126129977DC5B/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part08.rar
https://nitroflare.com/view/0B9AD27EC626FA8/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part09.rar
https://nitroflare.com/view/46BC71F9A847710/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part10.rar
https://nitroflare.com/view/EF9DB66FB8F80A2/rumus.Inverse.Physics.Informed.Neural.Networks.IPINNs.part11.rar