* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19

Autor Tópico: Machine Learning Models With Fastapi, Streamlit And Docker  (Lida 51 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117428
  • Karma: +0/-0
Machine Learning Models With Fastapi, Streamlit And Docker
« em: 19 de Março de 2023, 11:51 »

Machine Learning Models With Fastapi, Streamlit And Docker
Published 3/2023
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz
Language: English | Size: 764.33 MB | Duration: 1h 4m

Learn how to serve a machine learning model with FastAPI, Streamlit and Docker

What you'll learn
Develop an asynchronous API with Python and FastAPI
Serve up a machine learning model with FastAPI
Develop a UI with Streamlit
Containerize FastAPI and Streamlit with Docker
Leverage asyncio to execute code in the background outside the request/response flow
Requirements
Intermediate Python Skills
Intermediate Docker Skills
Description
The course "Serving a Machine Learning Model with FastAPI, Streamlit and Docker" is designed to provide learners with a comprehensive understanding of deploying a machine learning model using FastAPI, Streamlit, and Docker. This course is suitable for developers, data scientists, or anyone interested in deploying machine learning models in production.The course will begin with an introduction to the basics of deploying machine learning model. Learners will then be introduced to FastAPI, an efficient and easy-to-use web framework for building APIs in Python, and learn how to create a RESTful API for their machine learning model.Next, learners will be introduced to Streamlit, a powerful web application framework for creating interactive data visualizations and deploying machine learning models. The course will teach learners how to use Streamlit to create a user-friendly interface to interact with the machine learning model and visualize the model's predictions.Finally, learners will be introduced to Docker, a popular platform for building, shipping, and running applications in containers. The course will teach learners how to containerize their machine learning model using Docker, making it easy to deploy and scale.By the end of this course, learners will have gained hands-on experience in deploying machine learning models using FastAPI, Streamlit, and Docker. They will have the skills and knowledge to build and deploy their own machine learning models in production environments, and be able to demonstrate their ability to deploy machine learning models on a resume or portfolio.In this course, we're going to build a style transfer application based on the Perceptual Losses for Real-Time Style Transfer and Super-Resolution paper and Justin Johnson's pre-trained models. We'll use FastAPI as the backend to serve our predictions, Streamlit for the user interface, and OpenCV to do the actual prediction. Docker will be used as well.By the end of this course, you will be able to:Develop an asynchronous API with Python and FastAPIServe up a machine learning model with FastAPIDevelop a UI with StreamlitContainerize FastAPI and Streamlit with DockerLeverage asyncio to execute code in the background outside the request/response flow
Overview
Section 1: Introduction
Lecture 1 Introduction and App Overview
Lecture 2 FastAPI and Streamlit for Machine Learning Overview
Lecture 3 Docker Installation Guide
Lecture 4 Final Code
Section 2: FastAPI and Docker Backend
Lecture 5 Project Setup
Lecture 6 FastAPI Backend and Image Transformation Functionality
Lecture 7 Docker Container Setup
Section 3: Streamlit and Docker Frontend
Lecture 8 Developing the Streamlit User Interface
Lecture 9 Docker Compose Setup
Section 4: Asynchronous Model Serving
Lecture 10 Asynchronous Model Serving with FastAPI
Lecture 11 Updating the UI to respond to the async server
Section 5: Conclusion
Lecture 12 Conclusion and Final Remarks
Lecture 13 Final Code
Python Developers curious about Machine Learning,Developers who want to learn about working with Streamlit,Developers who want to learn how to prototype a subscription-based machine learning model.


Download link

rapidgator.net:
Citar
https://rapidgator.net/file/d90aa1ae92091b03799b7d0a0b90d843/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar.html

uploadgig.com:
Citar
https://uploadgig.com/file/download/47cA3Ea8d16a048e/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar

nitroflare.com:
Citar
https://nitroflare.com/view/52C4C9BC1420F74/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar

ddownload.com:
Citar
https://ddownload.com/wgy9ldaf6pz2/oncnw.Machine.Learning.Models.With.Fastapi.Streamlit.And.Docker.rar