* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    Hoje às 10:13
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2026, 17:37
  • j.s.: dgtgtr a todos  49E09B4F
    14 de Fevereiro de 2026, 17:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    14 de Fevereiro de 2026, 11:28
  • mario: ola boa tarde
    13 de Fevereiro de 2026, 17:16
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    13 de Fevereiro de 2026, 05:56
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17

Autor Tópico: Graph Learning for Fashion Compatibility Modeling, 2nd Edition  (Lida 180 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline oaxino

  • Moderador Global
  • ***
  • Mensagens: 49356
  • Karma: +0/-0
Graph Learning for Fashion Compatibility Modeling, 2nd Edition
« em: 13 de Novembro de 2022, 15:32 »


English | 2022 | ISBN: 3031188160 | 193 Pages | PDF EPUB (True) | 20 MB


This book sheds light on state-of-the-art theories for more challenging outfit compatibility modeling scenarios. In particular, this book presents several cutting-edge graph learning techniques that can be used for outfit compatibility modeling. Due to its remarkable economic value, fashion compatibility modeling has gained increasing research attention in recent years. Although great efforts have been dedicated to this research area, previous studies mainly focused on fashion compatibility modeling for outfits that only involved two items and overlooked the fact that each outfit may be composed of a variable number of items. This book develops a series of graph-learning based outfit compatibility modeling schemes, all of which have been proven to be effective over several public real-world datasets. This systematic approach benefits readers by introducing the techniques for compatibility modeling of outfits that involve a variable number of composing items. To deal with the challenging task of outfit compatibility modeling, this book provides comprehensive solutions, including correlation-oriented graph learning, modality-oriented graph learning, unsupervised disentangled graph learning, partially supervised disentangled graph learning, and metapath-guided heterogeneous graph learning. Moreover, this book sheds light on research frontiers that can inspire future research directions for scientists and researchers.

DOWNLOAD

katfile.com:
Citar
https://katfile.com/vlxu9k02jbfs/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z.html

ddownload.com:
Citar
https://ddownload.com/rjiqe4uxs0vm/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z

rapidgator.net:
Citar
https://rapidgator.net/file/60b75bd75db3acc81634163593052e01/aeail.Graph.Learning.for.Fashion.Compatibility.Modeling.2nd.Edition.7z.html