* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: R for Data Science: Your First Step as a Data Scientist  (Lida 148 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
R for Data Science: Your First Step as a Data Scientist
« em: 21 de Agosto de 2021, 11:10 »

Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 48.0 KHz
Language: English | Size: 5.38 GB | Duration: 10h 1m
Learn Data Science and Machine Learning (ML) with R Studio and submit your first Kaggle Project

What you'll learn
Developing Linear Regression in R
Developing Logistic Regression in R
Learning how to Evaluate Data Science Models
Learning how to manipulate data with Dplyr
Building a Data Science Project end-to-end
Submit your own predictions into Kaggle

Description
So, you've learned a bit of R Basics and are looking to understand how R can be used for Data Science? And are looking for a course that explains all the theory behind algorithms with coding?

R is on of the de facto languages for a lot of Data Science projects today - either for enterprise-level projects or research, R is a modern and flexible language with a smooth learning curve that enables most professionals to build predictive models in quick fashion.

This course was designed to be your next step into the R programming world! We will delve deeper into the concepts of Linear and Logistic Regression, understand how Tree Based models work, learn how to evaluate predictive models and more. This course contains lectures around the following groups:

Code along lectures where you will see how we can implement the stuff we will learn!

Test your knowledge with questions and practical exercises with different levels of difficulty!

This course was designed to be focused on the practical side of coding in R - other than studying the functions that let us build algorithms automatically we will investigate deeply how models are trained and how they get to the optimum solution to solve our data science projects.

At the end of the course you should be able to use R in a data science context - understanding the choices you have to make when it comes to algorithms and learn how to evaluate those choises. Along the way you will also learn how to manipulate data with Dplyr because most of the times, in a Data Science project, more than half of time is spent on data preparation!

Here are some examples of things you will be able to do after finishing the course:

Solving Regression problems using Linear Regression or Regression Trees.

Solving Classification problems using Logistic Regression or Classification Trees.

Learn how to evaluate algorithms using different metrics.

Understanding the concept of bias and variance.

Using Random Forests and understanding the reasoning behind them.

Manipulating data using Dplyr.

Build your own Kaggle Data Science project!

Join thousands of professionals and students in this R journey and discover the amazing power of this statistical open-source language.

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction