* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Master Data Mining in Data Science & Machine Learning  (Lida 140 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117559
  • Karma: +0/-0
Master Data Mining in Data Science & Machine Learning
« em: 21 de Agosto de 2021, 11:05 »

Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 48.0 KHz
Language: English | Size: 5.02 GB | Duration: 5h 16m
Learn about Data Mining Standard Processes, Survival Analysis, Clustering Analysis, Various algorithms and much more.

What you'll learn
Get started with Data Mining.
Learn about different Data Mining Standard Processes.
Learn the concept of Survival Analysis.
Learn about the concept of Cox Hazards Regression.
Learn about Clustering Analysis.
Learn about the Dimensionality reduction.
Learn about the concept of Association Rule Learning.
Learn about the Predictive Modelling.

Description
If you are looking to build strong foundations and understand advanced Data Mining techniques using Industry-standard Machine Learning models and algorithms then this is the perfect course is for you. We have covered everything you need about Data Mining and its processes, Machine Learning Models, and how to implement them in the real world.

Data mining means mining the data. It is defined as finding hidden insights(information) from the database and extract patterns from the data.

Data mining is an automated process that consists of searching large datasets for patterns humans might not spot.

In this course, you will get advanced knowledge on Data Mining.

This course begins by providing you the complete knowledge about the introduction of Data Mining.

This course is a complete package for everyone wanting to pursue a career in data mining.

In this course, you will cover the following topics:-

Data Mining Standard Processes.

KDD- Knowledge Discovery in Databases.

Introduction to SEMMA.

Introduction to CRISP- DM.

Introduction to TDSP- Team Data Science Process.

Survival Analysis.

Introduction to Survival Analysis.

Kaplan Meyer Estimator introduction.

Log Rank Test introduction.

Cox Hazards Regression.

Clustering Analysis.

KMeans clustering.

Gaussian Mixture Model.

Dimensionality reduction.

Introduction to Data Reduction.

PCA - Principal Component Analysis.

T-SNE.

LDA - Linear Discriminant Analysis.

Association Rule Learning.

Transaction List.

Encoding Transactions.

Aprior Algorithm and Visualization.

Tree based models.

Decision Trees.

Attribute selection method- Gini Index and Entropy.

Concept of Bagging.

Random Forest.

Boosting Algorithm.

Introduction to Adaboost and Gradient Boosting.

Introduction to XGBoost.

Model Explanationability.

Introduction to SHAP.

Local and Global Interpretability.

Introduction to LIME.

This course is a complete package.

Lots and lots of quizzes and exercises are waiting for you.

You will also have access to all the resources used in this course.

Enroll now and become an expert in Data Mining.

Who this course is for:
People who are quite beginners.
Anyone who is curious to learn Data Mining.
Anyone who is interested in learning Data Mining algorithms.
Data Scientists.
Machine learning experts.

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction