* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana   4tj97u<z
    15 de Fevereiro de 2025, 16:34
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2025, 17:06
  • j.s.: dgtgtr a todos  4tj97u<z
    14 de Fevereiro de 2025, 17:06
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    14 de Fevereiro de 2025, 11:24
  • cereal killa: ghyt74 pessoal  classic
    14 de Fevereiro de 2025, 10:08
  • JPratas: try65hytr Pessoal  classic k7y8j0 h7ft6l
    14 de Fevereiro de 2025, 03:52
  • JPratas: dgtgtr A Todos  4tj97u<z k7y8j0 yu7gh8
    13 de Fevereiro de 2025, 18:08
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    13 de Fevereiro de 2025, 11:32
  • j.s.: try65hytr a todos  4tj97u<z
    12 de Fevereiro de 2025, 21:00
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    08 de Fevereiro de 2025, 11:36
  • j.s.: tenham um excelente fim de semana  43e5r6 49E09B4F
    07 de Fevereiro de 2025, 20:23
  • j.s.: try65hytr a todos  4tj97u<z
    07 de Fevereiro de 2025, 20:23
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    07 de Fevereiro de 2025, 11:24
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    07 de Fevereiro de 2025, 04:15
  • j.s.: dgtgtr a todos  49E09B4F
    06 de Fevereiro de 2025, 14:24
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    05 de Fevereiro de 2025, 11:33
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    05 de Fevereiro de 2025, 02:35
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana   4tj97u<z
    01 de Fevereiro de 2025, 11:59
  • j.s.: tenham um excelente fim de semana  49E09B4F
    31 de Janeiro de 2025, 21:20
  • j.s.: try65hytr a todos  4tj97u<z
    31 de Janeiro de 2025, 21:20

Autor Tópico: Practical AI with Python and Reinforcement Learning  (Lida 72 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Moderador Global
  • ***
  • Mensagens: 118061
  • Karma: +0/-0
Practical AI with Python and Reinforcement Learning
« em: 12 de Julho de 2021, 10:01 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 120 lectures (20h 40m) | Size: 6.1 GB
Learn how to use Reinforcement Learning techniques to create practical Artificial Intelligence programs!

What you'll learn:
Reinforcement Learning with Python
Creating Artificial Neural Networks with TensorFlow
Using TensorFlow to create Convolution Neural Networks for Images
Using OpenAI to work with built-in game environments
Using OpenAI to create your own environments for any problem
Create Artificially Intelligent Agents
Tabular Q-Learning
State-action-reward-state-action (SARSA)
Deep Q-Learning (DQN)
DQN using Convolutional Neural Networks
Cross Entropy Method for Reinforcement Learning
Double DQN
Dueling DQN

Requirements
You should be very comfortable with basic Python and installing Python libraries.
This is NOT a course for beginners, we highly suggest you take our "Data Science and Machine Learning Masterclass" first!

Description
Please note! This course is in an "early bird" release, and we're still updating and adding content to it, please keep in mind before enrolling that the course is not yet complete.

"The future is already here - it's just not very evenly distributed."

Have you ever wondered how Artificial Intelligence actually works? Do you want to be able to harness the power of neural networks and reinforcement learning to create intelligent agents that can solve tasks with human level complexity?

This is the ultimate course online for learning how to use Python to harness the power of Neural Networks to create Artificially Intelligent agents!

This course focuses on a practical approach that puts you in the driver's seat to actually build and create intelligent agents, instead of just showing you small toy examples like many other online courses. Here we focus on giving you the power to apply artificial intelligence to your own problems, environments, and situations, not just those included in a niche library!

This course covers the following topics:

Artificial Neural Networks

Convolution Neural Networks

Classical Q-Learning

Deep Q-Learning

SARSA

Cross Entropy Methods

Double DQN

and much more!

We've designed this course to get you to be able to create your own deep reinforcement learning agents on your own environments. It focuses on a practical approach with the right balance of theory and intuition with useable code. The course uses clear examples in slides to connect mathematical equations to practical code implementation, before showing how to manually implement the equations that conduct reinforcement learning.

We'll first show you how Deep Learning with Keras and TensorFlow works, before diving into Reinforcement Learning concepts, such as Q-Learning. Then we can combine these ideas to walk you through Deep Reinforcement Learning agents, such as Deep Q-Networks!

There is still a lot more to come, I hope you'll join us inside the course!

Jose

Who this course is for
Python developers familiar with basics of machine learning, such as Scikit-Learn, but now want to learn how to create Artificially Intelligent Agents through Reinforcement Learning


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction