* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Classical Physics: how to solve advanced mechanics problems  (Lida 82 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 5.47 GB | Duration: 7h 5m

What you'll learn
How to tackle graduate-level problems in classical mechanics
the kinematics of rigid bodies
How to deal with non-inertial frames of reference
How to calculate the angular velocity of a rigid body
How to calculate the frequency of small oscillations
How to analyze the dynamics of rigid bodies
How to calculate the inertia matrix and moments of inertia
How to construct a Lagrangian in classical mechanics
The importance of the Lagrange formalism
How to derive the Hamiltonian (energy) of a system
Requirements
how to calculate multiple integrals (this is necessary for the calculation for the moments of inertia for example)
derivatives
vector notation (dot and cross product)
matrix multiplication
Description
This course is about solving advanced mechanics problems. This set of problems is taken from the first volume of the course of theoretical physics by Landau and Lifshitz. I have selected some problems from this book and provided a thorough step-by-step solution in the course; the solutions to these problems are also given in the book but they are usually quite terse, namely not many details are provided. Therefore, what we will do in the course is to first construct the necessary theory to deal with the problems, and then we will solve the problems. Some theory is also discussed while solving the problems themselves. Every single formula in this course is motivated/derived.

We will start from the action principle, whose main constituent is the Lagrangian, which is fundamental to dealing with advanced problems in all branches of physics, even if we restrict ourselves to mechanics in this case. We will solve several problems related to how to construct a Lagrangian of a (possibly complex) system, and we will also derive the Hamiltonian from the Lagrangian, which represents the energy of a system, and do some problems on that.

We will also study the kinematics of rigid bodies, and derive formulae for the velocities of points which belong to the bodies, as well as formulae for accelerations. Accelerations are important not just for kinematics, but also for the dynamics of rigid bodies.

As regards the motion of rigid bodies, we will discuss the kinetic energy, which is necessary to obtain the Lagrangian, and solve several problems in three dimensions related to how to find the kinetic energy of a body in motion.

The expression of the kinetic energy is dependent on the angular velocity (which is a concept that we will derive in kinematics), and also depends on the inertia matrix (or inertia tensor), which we will also derive. The formulae will be therefore written in a very general form, and this is useful when tackling difficult problems, since knowing a general method will provide the means to solve them.

The inertia tensor will appear in the expression for the kinetic energy, and it will also appear in dynamics, in the formula for moments; we will see why it appears, and use the theory to solve problems.

We will also discuss non-inertial frames, and find the deflection of a freely falling body from the vertical caused by the Earth's rotation (which makes the Earth a non-inertial frame).

Who this course is for:
Students who would like to learn the most general formalism to tackle advanced problems in classical mechanics

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction