* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: K Nearest Neighbors : Machine Learning  (Lida 69 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
K Nearest Neighbors : Machine Learning
« em: 08 de Julho de 2021, 11:58 »
MP4 | Video: h264, 1280x720 | Audio: AAC, 44100 Hz
Language: English | Size: 371 MB | Duration: 1h 8m

What you'll learn
K Nearest Neighbours Algorithm
Machine Learning
Data Science
Requirements
Python programming
Basics of machine learning
Zeal to learn
Not be able to eat 1 Pizza
Description
Hi , and welcome to the K Nearest Neighbours Course

Are you someone who is new to machine learning ?

Are you someone who wants to get started with machine learning ?

Can you sacrifice 1 McDonalds Meal for this amazing course ?

YES?

Then this course is for you -->

Machine learning which is a buzz word has been in the market for quite some time now . Suppose you are a pizza ? delivery guy , who has 3 stores A , B and C , and want to know which store to visit , or which store is closest to you . This is where KNN , comes in . Imagine you are a dot in the middle and A,B,C are stores . So KNN will help you in determining the closest distance .

Let us look at what you'll be requiring throught the course -

Materials Required -

Mac or Windows

At least 4 gb ram

Good coding skills

Python language

Zeal to learn

In this course you'll learn -

What is KNN

Machine learning

Visualising data

Splitting the dataset

How to apply KNN

Cosine Similarity

Confusion matrix

Work with really cool datasets and build real time projects

I believe in the concept of "Learn by doing " and this is emphasised in my class , I myself learn by doing things instead of listening to boring lectures !

You'll be able to use real time datasets after this class and learn all the necessary components required for getting started with machine learning

Will it be challenging ? YES

Will you get difficulty in understanding things ? YES (if you are a beginner)

But that is what my course is for , it will help you make an app in quick time and you will surely learn many things going forward !

Good luck !

Who this course is for:
Students who want to learn the first basic machine learning model
Python programmers who want to get into machine learning

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction