* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Siam Mask Object Tracking and Segmentation in OpenCV Python  (Lida 94 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 60 lectures (1h 10m) | Size: 530.7 MB
Implement Real-Time Object Tracking and Segmentation using OpenCV Python

What you'll learn:
Object Tracking with Segmentation
Fundamentals of Siam Mask
How to set-up your programming environment
How to work with your own Dataset
Train Siam Mask For your own Applications
How to test if Siam Mask is working

Requirements
Python Programming Experience
PC or Laptop
Nvidia CUDA enabled - GPU (Optional)
OpenCV Experience

Description
What Is Siam Mask

In this course you will learn how to implement both real-time object tracking and semi-supervised video object segmentation with a single simple approach. SiamMask, improves the offline training procedure of popular fully-convolutional Siamese approaches for object tracking by augmenting the loss with a binary segmentation task.

Once trained, SiamMask solely relies on a single bounding-box initialization and operates online, producing class-agnostic(any class will work) object segmentation masks and rotated bounding boxes at 35 frames per second.

Despite its simplicity, versatility and fast speed, our strategy allows us to establish a new state-of-the-art among real-time trackers on VOT-2018 dataset, while at the same time demonstrating competitive performance and the best speed for the semi-supervised video object segmentation task on DAVIS-2016 and DAVIS-2017

Applications of Siam Mask

Automatic Data Annotation - Regardless of Class

Rotoscoping

Robotics

Object Detection and targeting

Virtual Background without Green Screen

What you will Learn?

You will learn the fundamentals of Siam Mask and how it can be used for fast online object tracking and segmentation. You will first learn about the origins of Siam Mask, how it was developed as well its amazing performance on real world tests. Next we do a paper review to understand more about the architecture of Siamese Networks with regards to computer vision.

Thereafter, we move on to the implementation of Siam Mask by setting up the environment for development so that you can run Siam Mask on your own PC or Laptop. Once that is working, we will show you how to train Siam Mask for your own custom applications.

Once trained, you will need a method in which to test your new model so that you can apply it for real world applications.

Why Should I Take this Course?

You should take this course, because Siam Mask is a State of Art Model that has robust accuracy and performance and can be used in a wide variety of applications.

Who this course is for
Computer Vision Developers
Python and OpenCV curious about Object Tracking
Automated Data Annotation


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction