* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46

Autor Tópico: Natural Language Processing :Basics to Advanced Course  (Lida 176 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Natural Language Processing :Basics to Advanced Course
« em: 25 de Junho de 2021, 09:23 »

Genre: eLearning | MP4 | Video: h264, 1280x720 | Audio: AAC, 48.0 KHz
Language: English | Size: 3.31 GB | Duration: 4h 29m
Natural Language Processing : Basics to Advanced with pratical implementation using Python, TensorFlow, spaCy, gensim

What you'll learn
Concepts of Natural Language Processing and its Applications
Pratical implementation of Natural Language Processing Technqiues using Python, TensorFlow, spaCy and gensim libraries

Description
In this course you will be learning about Natural Language Processing (NLP) from an experienced professional. Giving machines the capacity to find meaning in unstructured data pulled from natural language holds notable promise. By 2025, the global NLP market is expected to reach over $34 billion, growing at a CAGR of 21.5% and there would be high deamand for NLP skills.

In this course I cover length and breadth of topics in NLP. I explain NLP concepts in a simple way along with practical implementation in Python using libraries like NLTK, spaCy, TensorFlow. I also discuss various topics like text pre-processing, text classification, text summarization, topic modelling and word embeddings. I also cover NLP applications in various domains like healthcare, finance. I am sure this course should help you in getting started and also become proficient in NLP

In this video course you will learn the following about Natural Language Processing:

Introduction to NLP

Its Applications in domains like finance and healthcare

Stemming and Lemmatimzation with NLTK and spaCy

TF-IDF, Bag of Words Represntation

Named Entity Recognition with spaCy in python

Word2Vec model and custom word2vec model in python

Exploratory data analysis on text dataset using python

LDA topic modelling

Text Classification with Neural network using Tensorflow in Python

Text Classification with Convolutional Neural Network( CNN) using Tensorflow in Python

Text Classification with Long Short Term memory( LSTM) networks using Tensorflow in Python

Extractive Text Summarization using gensim and python

Abstractive Text Summarization using Google PEGASUS

Screenshots


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction