* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Recommendation Engine Bootcamp with 3 Capstone Projects  (Lida 104 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Recommendation Engine Bootcamp with 3 Capstone Projects
« em: 24 de Junho de 2021, 07:34 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 59 lectures (3h 1m) | Size: 2.77 GB
Master recommendation systems Industry Projects using using modern recommendation techniques and methodologies

What you'll learn:
Learn about the different types of Recommender Systems
Learn about Content based recommendation system
Learn about Collaborative based filtering
Learn about Singular Value Decomposition
Learn recommending movies, books using the recommendation system
Learn about Surprise Library for recommendation systems

Requirements
Good knowledge of Python programming
Knowledge of Probability and Statistics concepts
Knowledge of Machine Learning Algorithms

Description
Welcome to the best online course on Recommendation Engine.

Master various recommendation engines including Content based filtering, collaborative filtering, Singular value decomposition.

Recommender systems aim to predict users' interests and recommend product items that quite likely are interesting for them.

A recommendation engine is a type of data filtering tool using machine learning algorithms to recommend the most relevant items to a particular user or customer.

It operates on the principle of finding patterns in consumer behavior data, which can be collected implicitly or explicitly.

This course gives you a thorough understanding of the Recommendation systems.

In this course, you will cover

Use cases of recommender systems.

Content-based filtering.

Filtering movies based on genres.

User-based collaborative filtering.

Item-based collaborative filtering.

Singular value decomposition using Surprise library.

Not only this, you will also work on three very exciting projects.

You will learn to create a movie recommendation engine as well as a book recommendation engine and Open job analyzer system.

It will be fun working on such exciting projects.

You will see how easy it is to recommend new books or movies based on the user's past preferences.

I guarantee you will love this course.

All the resources used in this course will be shared with you.

Who this course is for
Data Analysts
Data Scientists


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction