* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41
  • j.s.: try65hytr a todos  49E09B4F
    29 de Janeiro de 2026, 21:01
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    26 de Janeiro de 2026, 11:00
  • espioca: avast vpn
    26 de Janeiro de 2026, 06:27
  • j.s.: dgtgtr  todos  49E09B4F
    25 de Janeiro de 2026, 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    25 de Janeiro de 2026, 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46

Autor Tópico: Mathematical Optimization with GAMS and Pyomo (Python)  (Lida 196 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Mathematical Optimization with GAMS and Pyomo (Python)
« em: 23 de Junho de 2021, 11:18 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 52 lectures (8h 20m) | Size: 2.63 GB
Learn how to mathematically formulate business problems and find their optimal solutions using GAMS and Pyomo (Python)

What you'll learn:
Mathematical optimization
Linear programming
Integer programming
Nonlinear programming
Hands-on coding experience in GAMS
Hands-on coding experience in Pyomo (Python)

Requirements
This course is designed for complete beginners to mathematical optimization. There are no coding prerequisites either, as we go through the functions and syntaxes in GAMS and Pyomo in detail. We instruct you on the download and demo license installation for GAMS. Pyomo is an open source package which we use Google Colaboratory to run. Therefore, all you need is a functional Google account, and you are ready to get started on this introductory journey to optimization!

Description
This introductory course to optimization in GAMS and Pyomo (Python) contains 4 modules, namely,

Linear programming

Nonlinear programming

Mixed Integer Linear Programming, and

Mixed-Integer Nonlinear Programming

In each module, we aim to teach you the basics of each type of optimization through three different illustrative examples from different areas of science, engineering, and management. Using these examples, we aim to gently introduce you to coding in two environments commonly used for optimization, GAMS and Pyomo. GAMS is a licensed software, for which we use a demo license in this course. Pyomo is an open-source package in Python, which we use Google Colaboratory to run. As we proceed through the different examples in each module, we also introduce different functionalities in GAMS and Python, including data import and export.

At the end of this course, you will be able to,

Read a problem statement and build an optimization model

Be able to identify the objective function, decision variables, constraints, and parameters

Code an optimization model in GAMS

Define sets, variables, parameters, scalars, equations

Use different solvers in GAMS

Leverage the NEOS server for optimization

Import data from text, gdx, and spreadsheet files

Export data to text, gdx, and spreadsheet files

Impose different variable ranges, and bounds

Code an optimization model in Pyomo

Define models, sets, variables, parameters, constraints, and objective function

Use different solvers in Pyomo

Leverage the NEOS server for optimization

Import data from text, gdx, and spreadsheet files

Export data to text, gdx, and spreadsheet files

Impose different variable ranges, and bounds

Who this course is for
We have designed this course to be accessible to students and professionals in various disciplines including, but not limited to, operations research, engineering, science, and management. Hence, we have chosen illustrative examples for each module within the course from different disciplines such as production scheduling, chemical and electrical engineering, geometry, etc. For each example, we will go through the problem statement in detail before proceeding to coding in GAMS and Python, so rest assured that you can follow through regardless of your field of learning and work.


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction