* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Derivation of the energy spectrum of the hydrogen atom  (Lida 106 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Derivation of the energy spectrum of the hydrogen atom
« em: 16 de Junho de 2021, 10:01 »

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 10 lectures (2h 1m) | Size: 1 GB
Quantum physics and Schrodinger equation applied to the Hydrogen atom

What you'll learn:
How to derive the discrete energy spectrum of a hydrogen-like atom from the Schrodinger equation
How to use the method of separation of variables to solve the Schrodinger equation

Requirements
Calculus, Multivariable Calculus (especially: derivatives, the Laplacian, spherical coordinates)
Concept of potential energy, Coulomb interaction
Some familiarity with the Schrodinger equation (not how to solve it, but what it is, what the wave function and Hamiltonian are)
complex exponentials
Some familiarity with ordinary differential equations

Description
In this course the discrete energy spectrum of hydrogen-like atoms is derived from the Schrodinger equation. In the following, the history of this important discovery is contextualized.

In the early 20th century, Ernest Rutherford performed some experiments that established that atoms consisted of negatively charged electrons surrounding a small, dense, positively charged nucleus. From the experimental data, Rutherford was led to consider a planetary model of the atom, the Rutherford model of 1911. This had electrons orbiting a nucleus, but involved a technical difficulty: the laws of classical mechanics predict that the electron will release electromagnetic radiation while orbiting a nucleus. Because the electron would lose energy, it would rapidly collapse into the nucleus in a very minuscule amount of time (of the order of picoseconds). This model of the atom is disastrous because it predicts that all atoms are unstable. However, late 19th-century experiments had shown that atoms will only emit light (that is, electromagnetic radiation) at certain discrete frequencies.

To overcome the problems of Rutherford's atom, in 1913 Niels Bohr put forth a new model which would correctly describe the energy levels of hydrogen-like atoms.

In 1925, a new kind of mechanics was proposed, quantum mechanics, in which Bohr's model of electrons traveling in quantized orbits was extended into a more accurate model of electron motion. The new theory was proposed by Werner Heisenberg. Another form of the same theory, wave mechanics, was discovered by the famous Austrian physicist Erwin Schrödinger independently, and by different reasoning. Schrödinger employed de Broglie's matter waves, but sought wave solutions of a three-dimensional wave equation describing electrons that were constrained to move about the nucleus of a hydrogen-like atom, by being trapped by the potential of the positive nuclear charge.

Who this course is for
Students who want to understand the mathematics behind the energy spectrum of the hydrogen atom


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction