* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Decision Trees, Random Forests & Gradient Boosting in R  (Lida 118 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117576
  • Karma: +0/-0
Decision Trees, Random Forests & Gradient Boosting in R
« em: 27 de Março de 2021, 10:54 »
Video: .MKV, AVC, 1280x720, 30 fps | Audio: English, AAC, 44.1 KHz, 2 Ch | Duration: 3h 24m | 1.78 GB
Instructor: Carlos Martinez

Would you like to build predictive models using machine learning? That´s precisely what you will learn in this course "Decision Trees, Random Forests and Gradient Boosting in R." My name is Carlos Martínez, I have a Ph.D. in Management from the University of St. Gallen in Switzerland. I have presented my research at some of the most prestigious academic conferences and doctoral colloquiums at the University of Tel Aviv, Politecnico di Milano, University of Halmstad, and MIT. Furthermore, I have co-authored more than 25 teaching cases, some of them included in the case bases of Harvard and Michigan.

This is a very comprehensive course that includes presentations, tutorials, and assignments. The course has a practical approach based on the learning-by-doing method in which you will learn decision trees and ensemble methods based on decision trees using a real dataset. In addition to the videos, you will have access to all the Excel files and R codes that we will develop in the videos and to the solutions of the assignments included in the course with which you will self-evaluate and gain confidence in your new skills.

After a brief theoretical introduction, we will illustrate step by step the algorithm behind the recursive partitioning decision trees. After we know this algorithm in-depth, we will have earned the right to automate it in R, using the ctree and rpart functions to respectively construct conditional inference and recursive partitioning decision trees. Furthermore, we will learn to estimate the complexity parameter and to prune trees to increase the accuracy and reduce the overfitting of our predictive models. After building the decision trees in R, we will also learn two ensemble methods based on decision trees, such as Random Forests and Gradient Boosting. Finally, we will construct the ROC curve and calculate the area under such curve, which will serve as a metric to compare the goodness of our models.

The ideal students of this course are university students and professionals interested in machine learning and business intelligence. The course includes an introduction to the decision trees algorithm so the only requirement for the course is a basic knowledge of spreadsheets and R.

I hope you are ready to upgrade yourself and learn to optimize investment portfolios with excel and R. I´ll see you in class!


Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction