* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    Hoje às 11:07
  • JPratas: try65hytr Pessoal 4tj97u<z 2dgh8i k7y8j0 classic
    20 de Fevereiro de 2026, 04:50
  • j.s.: dgtgtr a todos  49E09B4F
    17 de Fevereiro de 2026, 13:55
  • FELISCUNHA: ghyt74   49E09B4F  e bom carnaval
    17 de Fevereiro de 2026, 10:38
  • sacana10: Bom dia a todos
    15 de Fevereiro de 2026, 13:14
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  101041
    15 de Fevereiro de 2026, 10:13
  • j.s.: tenham um excelente fim de semana  49E09B4F
    14 de Fevereiro de 2026, 17:37
  • j.s.: dgtgtr a todos  49E09B4F
    14 de Fevereiro de 2026, 17:36
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    14 de Fevereiro de 2026, 11:28
  • mario: ola boa tarde
    13 de Fevereiro de 2026, 17:16
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    13 de Fevereiro de 2026, 05:56
  • bruno mirandela: boa noite todos boa semana
    10 de Fevereiro de 2026, 21:42
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    10 de Fevereiro de 2026, 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    10 de Fevereiro de 2026, 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    10 de Fevereiro de 2026, 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    10 de Fevereiro de 2026, 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09

Autor Tópico: Writing CUDA kernels for interpolation  (Lida 283 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Writing CUDA kernels for interpolation
« em: 12 de Março de 2021, 17:03 »

Writing CUDA kernels for interpolation
MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 6 lectures (1h 12m) | Size: 281.3 MB
Using CUDA textures to interpolate images

What you'll learn:
Nearest-neighbor interpolation of a PGM image
Writing CUDA kernels
Texture filtering
Bilinear interpolation of a PGM image
Texture loopkup
Bicubic interpolation of a PGM image
Interpolation in CUDA

Requirements
Fundamentals of C/C++ and CUDA programming
Basic elements of calculus, especially function approximation

Description
In real-life applications, we want big images: when we watch a video clip on a PC, we like to see it in the full-screen mode. We want high-quality images: if a block of pixels gets damaged during the transmission, we want to repair it. We want cool images: by digital image manipulation, fancy artistic effects as seen in movies can be rendered. We want fast processing, especially when the images are big and many. To process even faster, we want that the various image pixels are processed in parallel.

CUDA (Compute Unified Device Architecture)                                                                                                                                                                                                       is a hardware architecture and programming model introduced by NVIDIA for the parallel processing of Graphics Processing Units (GPUs). It represents by now an assessed tool for parallel programming and permits low-level programming capable of achieving very high performance by directly and properly managing the thread work.

In this course, the direct use of CUDA for a simple yet common problem like image interpolation is illustrated. This will enable the attendee to get familiar with the functions running on the GPU, namely, the kernel functions. Being interpolation very common in technical and scientific applications, the development of parallel interpolation codes permits having a tool that can be reused when needed.

What will you learn in this course?

Nearest-neighbor interpolation

Linear and bilinear interpolation

CUDA texture memory

Texture filtering

Nearest-neighbor and linear interpolations of a PGM image

Cubic B-spline interpolation

Bicubic B-spline interpolation of a PGM image

Texture lookup

Catmull-Rom interpolation

Different common interpolation techniques for PGM images will be presented and implemented with customized CUDA kernels, also using CUDA texture memory.

Requirements

You should have basic knowledge of the fundamentals of C/C++ and CUDA programming

You should have basic knowledge of elements of calculus, especially function approximation

Who this course is for
Engineers, Physicists, Mathematicians, Economists
Students, Graduates, PhD

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction