* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    24 de Novembro de 2024, 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Deploy Machine Learning Models on GCP + AWS Lambda (Docker)  (Lida 101 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117505
  • Karma: +0/-0
Deploy Machine Learning Models on GCP + AWS Lambda (Docker)
« em: 26 de Outubro de 2020, 10:07 »

Deploy Machine Learning Models on GCP + AWS Lambda (Docker)
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 1.81 GB
Genre: eLearning Video | Duration: 53 lectures (4 hour, 17 mins) | Language: English
 How to Serialize - Deserialize model with scikit-learn & Deployment on Heroku, AWS Lambda, ECS, Docker and Google Cloud

What you'll learn

    Model Deployment Process
    Different option available for Model Deployment
    Deploy Scikit-learn, Tensorflow 2.0 Model with Flask Web Framework
    Deploy Model on Google cloud function, App engine
    Serve model through Google AI Platform
    Run Prediction API on Heroku Cloud
    Serialize and Deserialize model through Scikit-learn and Tensorflow
    Deploying model on Amazon AWS Lambda
    Install Flower prediction model with Docker
    Deploy Docker Container on Amazon Container Services (ECS)

Requirements

    Basics of Python Programming
    Basic knowledge of Web development

Description

Hello everyone, welcome to one of the most practical course on Machine learning and Deep learning model deployment production level.

What is model deployment :

Let's say you have a model after doing some rigorous training on your data set. But now what to do with this model. You have tested your model with testing data set that's fine. You got very good accuracy also with this model. But real test will come when live data will hit your model. So This course is about How to serialize your model and deployed on server.

After attending this course :

    you will be able to deploy a model on a cloud server.

    You will be ahead one step in a machine learning journey.

    You will be able to add one more machine learning skill in your resume.

What is going to cover in this course?

1.  Course Introduction

In this section I will teach you about what is model deployment basic idea about machine learning system design workflow and different deployment options are available at a cloud level.

2. Flask Crash course

In this section you will learn about crash course on flask for those of you who is not familiar with flask framework as we are going to deploy model with the help of this flask web development framework available in Python.

3.  Model Deployment with Flask

In this section you will learn how to Serialize and Deserialize scikit-learn model and will deploy owner flask based Web services. For testing Web API we will use Postman API testing tool and Python requests module.

4. Serialize Deep Learning Tensorflow Model

In this section you will learn how to serialize and deserialize keras model on Fashion MNIST Dataset.

5.  Deploy on Heroku cloud

In this section you will learn how to deploy already serialized flower classification data set model which we have created in a last section will deploy on Heroku cloud - Pass solution.

6.  Deploy on Google cloud

In this section you will learn how to deploy model on different Google cloud services like Google Cloud function, Google app engine and Google managed AI cloud.

7.  Deploy on Amazon AWS Lambda

In this section, you will learn how to deploy flower classification model on AWS lambda function.

8.  Deploy on Amazon AWS ECS with Docker Container

In This section, we will see how to put application inside docker container and deploy it inside Amazon ECS (Elastic Container Services)

This course comes with 30 days money back guarantee. No question ask. So what are you waiting for just enroll it today.

I will see you inside class.

Happy learning

Ankit Mistry

Who this course is for:

    Anyone who knows ML and want to move towards Model deployment
    Anyone who want to know how to put Machine Learning app into production

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction