* Cantinho Satkeys

Refresh History
  • FELISCUNHA: Votosde um santo domingo para todo o auditório  4tj97u<z
    Hoje às 11:06
  • j.s.: bom fim de semana  49E09B4F
    23 de Novembro de 2024, 21:01
  • j.s.: try65hytr a todos
    23 de Novembro de 2024, 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    23 de Novembro de 2024, 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10

Autor Tópico: Introduction to R programming & RStudio for beginners  (Lida 214 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117505
  • Karma: +0/-0
Introduction to R programming & RStudio for beginners
« em: 11 de Setembro de 2020, 14:43 »

Introduction to R programming & RStudio for beginners
Video: .mp4 (1280x720, 30 fps(r)) | Audio: aac, 44100 Hz, 2ch | Size: 294 MB
Genre: eLearning Video | Duration: 10 lectures (30 mins) | Language: English

 Introduction to R programming & RStudio for beginners - with practical exercises

What you'll learn

    Comprehensive introduction to R programming & R Studio
    Introduction to R coding
    Introduction to data science
    introduction to data analytics
    how to install R studio
    how to analyse data using R and R studio

Requirements

    Some secondary level mathematics might be helpful, but not compulsory
    you should have a basic understanding of Computer Programming terminologies.
    A basic understanding of any of the programming languages will help you in understanding the R programming concepts and move fast on the learning track.

Description

(Please note: this course is a basic introduction to R and RStudio, meant for beginner level. More advanced courses coming soon.)

R is currently one of the most requested programming languages in the Data Science job market that makes it the hottest trend nowadays.

R is a programming language and free software environment for statistical computing, data manipulation & analysis, graphics representation and reporting supported by the R Foundation for Statistical Computing. The R language is widely used among statisticians and data miners for developing statistical software and data analysis. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

No one is born a data scientist. Every person who works with R today was once a complete beginner. No matter how much you know about the R ecosystem already, you'll always have more to learn.

Applications of R:

    We use R for Data Science. It gives us a broad variety of libraries related to statistics. It also provides the environment for statistical computing and design.

    R is used by many quantitative analysts as its programming tool. Thus, it helps in data importing and cleaning.

    R is the most prevalent language. So many data analysts and research programmers use it. Hence, it is used as a fundamental tool for finance.

    Tech giants like Google, Facebook, bing, Accenture, Wipro and many more using R nowadays.

Why R Programming Language?

    R programming is used as a leading tool for machine learning, statistics, and data analysis. Objects, functions, and packages can easily be created by R.

    It's a platform-independent language. This means it can be applied to all operating system.

    It's an open-source free language. That means anyone can install it in any organization without purchasing a license.

    R programming language is not only a statistic package but also allows us to integrate with other languages (C, C++). Thus, you can easily interact with many data sources and statistical packages.

    The R programming language has a vast community of users and it's growing day by day.

Statistical Features of R:

    Basic Statistics: The most common basic statistics terms are the mean, mode, and median. These are all known as "Measures of Central Tendency." So using the R language we can measure central tendency very easily.

    Static graphics: R is rich with facilities for creating and developing interesting static graphics. R contains functionality for many Description types including graphic maps, mosaic Descriptions, biDescriptions, and the list goes on.

    Probability distributions: Probability distributions play a vital role in statistics and by using R we can easily handle various types of probability distribution such as Binomial Distribution, Normal Distribution, Chi-squared Distribution and many more.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, etc) and graphical techniques, and is highly extensible. The S language is often the vehicle of choice for research in statistical methodology, and R provides an Open Source route to participation in that activity.

One of R's strengths is the ease with which well-designed publication-quality Descriptions can be produced, including mathematical symbols and formulae where needed.

R, like S, is designed around a true computer language, and it allows users to add additional functionality by defining new functions. Much of the system is itself written in the R dialect of S, which makes it easy for users to follow the algorithmic choices made. For computationally-intensive tasks, C, C++ and Fortran code can be linked and called at run time. Advanced users can write C code to manipulate R objects directly.

R & RStudio includes

    an effective data handling and storage facility,

    a suite of operators for calculations on arrays, in particular matrices,

    a large, coherent, integrated collection of intermediate tools for data analysis,

    graphical facilities for data analysis and display either on-screen or on hardcopy, and

    a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input and output facilities.

Who this course is for:

    data science students
    data analytics students
    statistics students
    statistical analysis students
    data engineering students
    people interested in data science
    people interested in data analytics with R
    people with python coding skills, interested to learn                                                                                                                                                                                                        more about R programming
    Data Science beginners
    This course is designed for software programmers, statisticians and data miners who are looking forward for developing statistical software using R programming.
    If you are trying to understand the R programming language as a beginner, this course will give you enough understanding on almost all the concepts of the language from where you can take yourself to higher levels of expertise.

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction