* Cantinho Satkeys

Refresh History
  • j.s.: bom fim de semana  49E09B4F
    Hoje às 21:01
  • j.s.: try65hytr a todos
    Hoje às 21:01
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    Hoje às 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19

Autor Tópico: Udemy - Deep Learning Prerequisites Logistic Regression in Python (Updated)  (Lida 223 vezes)

0 Membros e 2 Visitantes estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117428
  • Karma: +0/-0

Udemy - Deep Learning Prerequisites: Logistic Regression in Python
WEBRip | English | MP4 | 1280 x 720 | AVC ~78 kbps | 10 fps
AAC | 192 Kbps | 48.0 KHz | 2 channels | Subs: English (.srt) | ~6 hours | 1.25 GB
Genre: eLearning Video / Development, Data Science, Deep Learning
Data science techniques for professionals and students - learn the theory behind logistic regression and code in Python

What you'll learn

program logistic regression from scratch in Python
describe how logistic regression is useful in data science
derive the error and update rule for logistic regression
understand how logistic regression works as an analogy for the biological neuron
use logistic regression to solve real-world business problems like predicting user actions from e-commerce data and facial expression recognition
understand why regularization is used in machine learning

Requirements
Derivatives, matrix arithmetic, probability
You should know some basic Python coding with the Numpy Stack

Description

This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python.

This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.

This course provides you with many practical examples so that you can really see how deep learning can be used on anything. Throughout the course, we'll do a course project, which will show you how to predict user actions on a website given user data like whether or not that user is on a mobile device, the number of products they viewed, how long they stayed on your site, whether or not they are a returning visitor, and what time of day they visited.

Another project at the end of the course shows you how you can use deep learning for facial expression recognition. Imagine being able to predict someone's emotions just based on a picture!

If you are a programmer and you want to enhance your coding abilities by learning about data science, then this course is for you. If you have a technical or mathematical background, and you want use your skills to make data-driven decisions and optimize your business using scientific principles, then this course is for you.

This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

Suggested Prerequisites:

calculus (taking derivatives)

matrix arithmetic

probability

Python coding: if/else, loops, lists, dicts, sets

Numpy coding: matrix and vector operations, loading a CSV file

TIPS (for getting through the course):

Watch it at 2x.

Take handwritten notes. This will drastically increase your ability to retain the information.

Write down the equations. If you don't, I guarantee it will just look like gibberish.

Ask lots of questions on the discussion board. The more the better!

Realize that most exercises will take you days or weeks to complete.

Write code yourself, don't just sit there and look at my code.

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)

Who this course is for:
Adult learners who want to get into the field of data science and big data
Students who are thinking of pursuing machine learning or data science
Students who are tired of boring traditional statistics and prewritten functions in R, and want to learn how things really work by implementing them in Python
People who know some machine learning but want to be able to relate it to artificial intelligence
People who are interested in bridging the gap between computational neuroscience and machine learning

        General
Complete name                            : 6. L1 Regularization - Code.mp4
Format                                   : MPEG-4
Format profile                           : Base Media / Version 2
Codec ID                                 : mp42 (isom/iso2/avc1/mp41/mp42)
File size                                : 12.0 MiB
Duration                                 : 6 min 13 s
Overall bit rate                         : 270 kb/s
Encoded date                             : UTC 2016-12-13 07:57:54
Tagged date                              : UTC 2016-12-13 07:57:54
Writing application                      : Lavf53.32.100

Video
ID                                       : 1
Format                                   : AVC
Format/Info                              : Advanced Video Codec
Format profile                           : High@L3
Format settings                          : CABAC / 4 Ref Frames
Format settings, CABAC                   : Yes
Format settings, RefFrames               : 4 frames
Codec ID                                 : avc1
Codec ID/Info                            : Advanced Video Coding
Duration                                 : 6 min 13 s
Bit rate                                 : 78.0 kb/s
Width                                    : 1 280 pixels
Height                                   : 720 pixels
Display aspect ratio                     : 16:9
Frame rate mode                          : Constant
Frame rate                               : 10.000 FPS
Color space                              : YUV
Chroma subsampling                       : 4:2:0
Bit depth                                : 8 bits
Scan type                                : Progressive
Bits/(Pixel*Frame)                       : 0.008
Stream size                              : 3.48 MiB (29%)
Writing library                          : x264 core 136
Encoding settings                        : cabac=1 / ref=4 / deblock=1:0:0 / analyse=0x3:0x113 / me=umh / subme=7 / psy=0 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=0 / chroma_qp_offset=0 / threads=48 / lookahead_threads=5 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=16 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=300 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc=2pass / mbtree=0 / bitrate=78 / ratetol=1.0 / qcomp=0.60 / qpmin=10 / qpmax=51 / qpstep=4 / cplxblur=20.0 / qblur=0.5 / ip_ratio=1.40 / pb_ratio=1.30 / aq=1:1.00
Encoded date                             : UTC 2016-12-13 07:57:54
Tagged date                              : UTC 2016-12-14 02:55:01

Audio
ID                                       : 2
Format                                   : AAC
Format/Info                              : Advanced Audio Codec
Format profile                           : LC
Codec ID                                 : mp4a-40-2
Duration                                 : 6 min 13 s
Bit rate mode                            : Constant
Bit rate                                 : 192 kb/s
Channel(s)                               : 2 channels
Channel positions                        : Front: L R
Sampling rate                            : 48.0 kHz
Frame rate                               : 46.875 FPS (1024 SPF)
Compression mode                         : Lossy
Stream size                              : 8.44 MiB (70%)
Default                                  : Yes
Alternate group                          : 1
Encoded date                             : UTC 2016-12-13 07:57:54
Tagged date                              : UTC 2016-12-14 02:55:01   

Screenshots
   

   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction