* Cantinho Satkeys

Refresh History
  • FELISCUNHA: cereal killa  Boa noite amigo , eu percebi , aquele abraço  101041
    Hoje às 20:48
  • cereal killa: boas feliscunha  49E09B4F, t5r76 so dava mais jeito  p0i8l p0i8l
    Hoje às 19:04
  • FELISCUNHA: cereal killa   Já mudaste de clube ???   535reqef34
    Hoje às 11:41
  • FELISCUNHA: Bom dia pessoal  49E09B4F
    Hoje às 11:39
  • cereal killa: try65hytr raio da chuva nao acaba  3w45r  9Scp0 9Scp0
    09 de Fevereiro de 2026, 20:18
  • worrierblack: 4tj97u<z
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • worrierblack: hello
    09 de Fevereiro de 2026, 03:09
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    08 de Fevereiro de 2026, 11:39
  • j.s.: tenham um bom fim de semana,   49E09B4F 49E09B4F
    07 de Fevereiro de 2026, 14:31
  • j.s.: dgtgtr a todos  49E09B4F
    07 de Fevereiro de 2026, 14:30
  • FELISCUNHA: ghyt74  pessoall 49E09B4F
    06 de Fevereiro de 2026, 12:00
  • JPratas: try65hytr A Todos  4tj97u<z  2dgh8i k7y8j0 classic
    06 de Fevereiro de 2026, 05:17
  • joca34: ola amigos alguem tem este cd Ti Maria da Peida -  Mãe negra
    05 de Fevereiro de 2026, 16:09
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    03 de Fevereiro de 2026, 11:46
  • Robi80g: CIAO A TUTTI
    03 de Fevereiro de 2026, 10:53
  • Robi80g: THE SWAP FILM WALT DISNEY
    03 de Fevereiro de 2026, 10:50
  • Robi80g: SWAP
    03 de Fevereiro de 2026, 10:50
  • j.s.: dgtgtr a todos  49E09B4F
    02 de Fevereiro de 2026, 16:50
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    02 de Fevereiro de 2026, 11:41

Autor Tópico: Machine Learning for Finance  (Lida 362 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Machine Learning for Finance
« em: 23 de Abril de 2020, 12:14 »

Machine Learning for Finance
.MP4, AVC, 1920x1080, 30 fps | English, AAC, 2 Ch | 4h 30m | 5.08 GB
Instructor: Aryan Singh

Machine Learning techniques for solving major financial issues

Learn

How to tackle problems in Fintech and financial investments
Learn feature engineering, EDA and understanding with regards to financial data
Build an ANN-based model for predicting the stock prices
Enhance your Machine Learning skills with ensemble models like random forest and XGBoost.
Enhance your understanding of Neural Networks to build regression-based models.
Learn how to identify fraudulent transactions by building a fraud detection model by using classification models.
Achieve efficient frontier by using features like Sharpe ratios and risk management.

About

Machine Learning for Finance is a perfect course for financial professionals entering the fintech domain. It shows how to solve some of the most common and pressing issues facing institutions in the financial industry, from retail banks to hedge funds.

This video course focuses on Machine Learning and covers a range of analysis tools, such as NumPy, MatDescriptionlib, and Pandas. It is packed full of hands-on code simulating many of the problems and providing working solutions.

This course aims to build your confidence and the experience to go ahead and tackle real-life problems in financial analysis. The industry is adopting automatic, data-driven algorithms at a rapid pace, and Machine Learning for Finance gives you the skills you need to be at the forefront.

By the end of this course, you will be equipped with all the tools from the world of Finance, machine learning and deep learning essential for tackling all these pressing issues in the area of Fintech.

Features

Sets a foundation of what to follow by teaching visualization and exploratory analysis of financial data, the typical features like RSI and moving average.
Predict stock prices by using Machine Learning models like Linear Regression, Random Forest, XGBoost and neural networks.
Use modern portfolio theory, Sharpe ratio, investment simulation, and machine learning to create a rewarding portfolio of stock investments.
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction