* Cantinho Satkeys

Refresh History
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana
    Hoje às 12:27
  • JPratas: try65hytr A Todos  101yd91 k7y8j0
    22 de Novembro de 2024, 02:46
  • j.s.: try65hytr a todos  4tj97u<z 4tj97u<z
    21 de Novembro de 2024, 18:43
  • FELISCUNHA: dgtgtr  pessoal   49E09B4F
    20 de Novembro de 2024, 12:26
  • JPratas: try65hytr Pessoal  4tj97u<z classic k7y8j0
    19 de Novembro de 2024, 02:06
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    16 de Novembro de 2024, 11:11
  • j.s.: bom fim de semana  49E09B4F
    15 de Novembro de 2024, 17:29
  • j.s.: try65hytr a todos  4tj97u<z
    15 de Novembro de 2024, 17:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Novembro de 2024, 10:07
  • JPratas: try65hytr A Todos  4tj97u<z classic k7y8j0
    15 de Novembro de 2024, 03:53
  • FELISCUNHA: dgtgtr   49E09B4F
    12 de Novembro de 2024, 12:25
  • JPratas: try65hytr Pessoal  classic k7y8j0 yu7gh8
    12 de Novembro de 2024, 01:59
  • j.s.: try65hytr a todos  4tj97u<z
    11 de Novembro de 2024, 19:31
  • cereal killa: try65hytr pessoal  2dgh8i
    11 de Novembro de 2024, 18:16
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    09 de Novembro de 2024, 11:43
  • JPratas: try65hytr Pessoal  classic k7y8j0
    08 de Novembro de 2024, 01:42
  • j.s.: try65hytr a todos  49E09B4F
    07 de Novembro de 2024, 18:10
  • JPratas: dgtgtr Pessoal  49E09B4F k7y8j0
    06 de Novembro de 2024, 17:19
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    03 de Novembro de 2024, 10:49
  • j.s.: bom fim de semana  43e5r6 49E09B4F
    02 de Novembro de 2024, 08:37

Autor Tópico: Fundamentals of Statistics and Visualization in Python [Video]  (Lida 140 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online mitsumi

  • Moderador Global
  • ***
  • Mensagens: 117428
  • Karma: +0/-0

Fundamentals of Statistics and Visualization in Python
by Karen Yang

English | 2020 | h264, yuv420p, 1920x1080 | aac, 48000 Hz, 2 channels | 3h 15mn | 732 MB

Learn   
Basic concepts in statistics and data visualization
Use Python data visualization tools to perform data visualization
Apply probability to statistics with the use of Bayesian Inference, a powerful alternative to classical statistics
Calculate and build confidence intervals in Python
Run basic regressions focused on linear and multilinear data
Run hypothesis tests and perform Bayesian inference for effective analysis and visualization
Apply probability to statistics by updating beliefs
About   
Statistics and visualization in Python can be applied to a wide variety of areas; having these skills is crucial for data scientists. In this course, we explore several core statistical concepts to utilize data; construct confidence intervals in Python and assess the results; discover correlations; and update your beliefs using Bayesian Inference.
In this tutorial, you will discover how to use the Statsmodels, MatDescriptionlib, pandas, and Seaborn Python libraries for statistical data visualization. Follow along with author-Dr. Karen Yang, a seasoned data scientist and data engineer-to explore, learn, and strengthen your skills in fundamental statistics and visualization. This course utilizes the Jupyter Notebook environment to execute tasks.
By the end of this learning journey, you'll have developed a solid understanding of fundamental statistics and visualization concepts and will be confident enough to apply them to your data analysis projects.
Please note that prior knowledge of Python programming and some familiarity with pandas and NumPy are needed in order to get the best out of this course.

Features   
Discover and sharpen your skills in core statistics and visualization
Create vibrant data visualizations using Seaborn and MatDescriptionlib
Apply what you've learned from this course to your data analysis projects
   

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction