* Cantinho Satkeys

Refresh History
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    Hoje às 11:58
  • JPratas: dgtgtr Pessoal  101041 Vamos Todos Ajudar na Manutenção do Forum, Basta 1 Euro a Cada Um  43e5r6
    03 de Julho de 2025, 19:02
  • cereal killa: Todos os anos e preciso sempre a pedir esmolas e um simples gesto de nem que seja 1€ que fosse dividido por alguns ajudava, uma coisa e certa mesmo continuando isto vai levar volta a como se tem acesso aos tópicos, nunca se quis implementar esta ideia mas quem não contribuir e basta 1 € por ano não terá acesso a sacar nada, vamos ver desenrolar disto mais ate dia 7,finalmente um agradecimento em nome do satkeys a quem já fez a sua doação, obrigada
    03 de Julho de 2025, 15:07
  • m1957: Por favor! Uma pequena ajuda, não deixem que o fórum ecerre. Obrigado!
    03 de Julho de 2025, 01:10
  • j.s.: [link]
    02 de Julho de 2025, 21:09
  • j.s.: h7t45 ao membro anónimo pela sua ajuda  49E09B4F
    02 de Julho de 2025, 21:09
  • j.s.: dgtgtr a todos  4tj97u<z
    01 de Julho de 2025, 17:18
  • FELISCUNHA: Votos de um santo domingo para todo o auditório  4tj97u<z
    29 de Junho de 2025, 11:59
  • m1957: Foi de boa vontade!
    28 de Junho de 2025, 00:39
  • j.s.: passem f.v. por aqui [link]    h7t45
    27 de Junho de 2025, 17:20
  • j.s.: renovamos o nosso pedido para uma pequena ajuda para pagemento  do nosso forum
    27 de Junho de 2025, 17:19
  • j.s.: h7t45 aos convidados de honra Felizcunha e M1957 pela ajuda
    27 de Junho de 2025, 17:15
  • j.s.: dgtgtr a todos  4tj97u<z
    27 de Junho de 2025, 17:13
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    27 de Junho de 2025, 11:51
  • JPratas: try65hytr A Todos  classic k7y8j0
    27 de Junho de 2025, 04:35
  • m1957: Por favor vaamos todos dar uma pequena ajuda, para não deixar encerrar o fórum! Obrigado.
    26 de Junho de 2025, 23:45
  • FELISCUNHA: j.s. enviei PM  101041
    26 de Junho de 2025, 21:33
  • FELISCUNHA: try65hytr  pessoal   htg6454y
    26 de Junho de 2025, 21:33
  • JPratas: try65hytr Pessoal  4tj97u<z
    26 de Junho de 2025, 02:28
  • cereal killa: Boa Tarde Pessoal E com enorme tristeza que depois de 15 anos que idealizei e abri este fórum vejo que esta na iminência de fechar portas porque ninguém tenta ajudar o pagamento do servidor, mas cada ano e sempre difícil arranjar almas caridosas que nos bom ajudando mas este ano esta complicado, mas infelizmente e como diz o j.s dia 5/07 se não houver algumas ajudas esta vez vai mesmo fechar…..e pena e triste mas tudo na vida tem fim. obrigada cereal killa
    25 de Junho de 2025, 19:40

Autor Tópico: Building Your First PyTorch Solution  (Lida 278 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 121842
  • Karma: +0/-0
Building Your First PyTorch Solution
« em: 01 de Julho de 2019, 12:41 »

Building Your First PyTorch Solution
.MP4, AVC, 1280x720, 30 fps | English, AAC, 2 Ch | 2h 24m | 298 MB
Instructor: Janani Ravi

This course covers the important practical aspects of installing PyTorch from scratch on a variety of different platforms and getting going with classification and regression models.

PyTorch is fast emerging as a popular choice for building deep learning models owing to its flexibility, ease-of-use, and built-in support for optimized hardware such as GPUs. Using PyTorch, you can build complex deep learning models, while still using Python-native support for debugging and visualization. In this course, Building Your First PyTorch Solution, you will gain the ability to get up and running by building your first regression and classification models. First, you will learn how to install PyTorch using pip and conda, and see how to leverage GPU support. Next, you will discover how to hand-craft a linear regression model using a single neuron, by defining the loss function yourself. You will then see how PyTorch optimizers can be used to make this process a lot more seamless. You will understand how different activation functions and dropout can be added to PyTorch neural networks. Finally, you will explore how to build classification models in PyTorch. You will round out the course by extending the PyTorch base module to implement a custom classifier. When you're finished with this course, you will have the skills and knowledge to move on to installing PyTorch from scratch in a new environment and building models leveraging and customizing various PyTorch abstractions.
           

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction