* Cantinho Satkeys

Refresh History
  • j.s.: try65hytr a todos  49E09B4F
    20 de Janeiro de 2026, 18:15
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    20 de Janeiro de 2026, 11:07
  • j.s.: dgtgtr a todos  49E09B4F
    18 de Janeiro de 2026, 16:02
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Janeiro de 2026, 11:18
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    16 de Janeiro de 2026, 04:50
  • j.s.: try65hytr a todos  49E09B4F 49E09B4F
    15 de Janeiro de 2026, 19:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Janeiro de 2026, 11:51
  • j.s.: try65hytr a todos
    13 de Janeiro de 2026, 19:09
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    13 de Janeiro de 2026, 10:48
  • cereal killa: 2dgh8i  1j6iv5
    12 de Janeiro de 2026, 20:15
  • cereal killa: try65hytr pessoal  2dgh8i  classic
    12 de Janeiro de 2026, 20:00
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    10 de Janeiro de 2026, 12:21
  • asakzt: Managing database versions with Liquibase and Spring Boot
    10 de Janeiro de 2026, 11:35
  • tita: Musica Box Pop
    09 de Janeiro de 2026, 12:18
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    08 de Janeiro de 2026, 11:01
  • j.s.: try65hytr a todos  49E09B4F
    07 de Janeiro de 2026, 20:37
  • TWT: Interaction Design Specialization
    07 de Janeiro de 2026, 07:38
  • FELISCUNHA: ghyt74  pessoal   4tj97u<z
    05 de Janeiro de 2026, 10:33
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29
  • Alberto: The Alan Parsons Project
    05 de Janeiro de 2026, 05:29

Autor Tópico: Applied Machine Learning Algorithms  (Lida 496 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Offline mitsumi

  • Sub-Administrador
  • ****
  • Mensagens: 129146
  • Karma: +0/-0
Applied Machine Learning Algorithms
« em: 16 de Maio de 2019, 10:37 »

Applied Machine Learning: Algorithms
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 2.5 Hours | 345 MB
Genre: eLearning | Language: English

 In the first installment of the Applied Machine Learning series, instructor Derek Jedamski covered foundational concepts, providing you with a general recipe to follow to attack any machine learning problem in a pragmatic, thorough manner. In this course-the second and final installment in the series-Derek builds on top of that architecture by exploring a variety of algorithms, from logistic regression to gradient boosting, and showing how to set a structure that guides you through picking the best one for the problem at hand. Each algorithm has its pros and cons, making each one the preferred choice for certain types of problems. Understanding what actually drives each algorithm, as well as their benefits and drawbacks, can give you a significant competitive advantage as a data scientist.
       

               

Download link:
Só visivel para registados e com resposta ao tópico.

Only visible to registered and with a reply to the topic.

Links are Interchangeable - No Password - Single Extraction