* Cantinho Satkeys

Refresh History
  • j.s.: dgtgtr  todos  49E09B4F
    Hoje às 15:36
  • Radio TugaNet: Bom Dia Gente Boa
    Hoje às 10:18
  • FELISCUNHA: dgtgtr   49E09B4F  e bom fim de semana  4tj97u<z
    24 de Janeiro de 2026, 12:15
  • Cocanate: J]a esta no Forun
    24 de Janeiro de 2026, 01:54
  • Cocanate: Eu tenho
    24 de Janeiro de 2026, 01:46
  • Cocanate: boas minha gente
    24 de Janeiro de 2026, 01:26
  • joca34: BOM DIA AL TEM ESTE CD Star Music - A Minha prima Palmira
    23 de Janeiro de 2026, 15:23
  • joca34: OLA
    23 de Janeiro de 2026, 15:23
  • FELISCUNHA: Bom dia pessoal  4tj97u<z
    23 de Janeiro de 2026, 10:59
  • JPratas: try65hytr Pessoal  4tj97u<z 2dgh8i k7y8j0 classic
    23 de Janeiro de 2026, 05:16
  • j.s.: try65hytr a todos  49E09B4F
    20 de Janeiro de 2026, 18:15
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    20 de Janeiro de 2026, 11:07
  • j.s.: dgtgtr a todos  49E09B4F
    18 de Janeiro de 2026, 16:02
  • FELISCUNHA: ghyt74   49E09B4F  e bom fim de semana  4tj97u<z
    17 de Janeiro de 2026, 11:18
  • JPratas: try65hytr Pessoal  2dgh8i k7y8j0 yu7gh8
    16 de Janeiro de 2026, 04:50
  • j.s.: try65hytr a todos  49E09B4F 49E09B4F
    15 de Janeiro de 2026, 19:29
  • FELISCUNHA: ghyt74  pessoal   49E09B4F
    15 de Janeiro de 2026, 11:51
  • j.s.: try65hytr a todos
    13 de Janeiro de 2026, 19:09
  • FELISCUNHA: ghyt74  pessoal  4tj97u<z
    13 de Janeiro de 2026, 10:48
  • cereal killa: 2dgh8i  1j6iv5
    12 de Janeiro de 2026, 20:15

Autor Tópico: Spring AI + RAG Build Production-Grade AI with Your Data  (Lida 21 vezes)

0 Membros e 1 Visitante estão a ver este tópico.

Online WAREZBLOG

  • Moderador Global
  • ***
  • Mensagens: 3070
  • Karma: +0/-0
Spring AI + RAG Build Production-Grade AI with Your Data
« em: 19 de Janeiro de 2026, 22:19 »

Free Download Spring AI + RAG Build Production-Grade AI with Your Data
Published 1/2026
Created by Infiproton Tech, Harish B N
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz, 2 Ch
Level: All | Genre: eLearning | Language: English | Duration: 48 Lectures ( 3h 50m ) | Size: 3 GB

Spring AI RAG system design covering ingestion, chunking, retrieval, and prompt reliability.
What you'll learn
✓ Design end-to-end RAG systems using Spring AI, following backend system design principles rather than demo-style implementations.
✓ Build repeatable ingestion pipelines for PDFs, wiki documents, and database content with clear structure and metadata.
✓ Implement effective chunking and embedding pipelines that directly impact retrieval quality and correctness.
✓ Design metadata-aware retrieval pipelines and integrate them cleanly into backend chat flows.
✓ Control LLM behavior using explicit prompt orchestration, grounding rules, and source-aware answers.
✓ Manage the full knowledge lifecycle by safely adding, updating, and deleting data without corrupting retrieval results.
Requirements
● Basic experience with Java and Spring Boot (REST APIs, configuration, project structure).
● Comfortable working with databases and general backend application concepts.
● Familiarity with IDE-based development and running applications locally.
● No prior AI, RAG, or Spring AI experience required - all AI concepts are covered from scratch.
Description
Most RAG courses stop at loading a few documents and asking questions.
This course goes further.
Spring AI + RAG: Build Production-Grade AI with Your Data teaches you how to design, build, and operate a real Retrieval-Augmented Generation (RAG) system the way backend engineers build serious systems - with clear boundaries, explicit pipelines, and production-minded decisions.
This is not a prompt-engineering or chatbot tutorial.
It is a backend-first system design course focused on correctness, reliability, and long-term maintainability.
You will build a complete Internal Knowledge Assistant for a fictional company, using
• Spring Boot
• Spring AI
• PostgreSQL
• Redis / vector stores
The same codebase evolves throughout the course, exactly like a real backend system.
What Makes This Course Different
• RAG is treated as a system, not a prompt trick
• Ingestion, chunking, retrieval, and prompting are separate, testable pipelines
• Metadata is a first-class concern, not an afterthought
• Knowledge can be added, updated, and deleted safely
• Everything is implemented using Spring AI abstractions, not custom hacks
• No Python, no LangChain, no demo-only shortcuts
By the end, you will not just "use Spring AI" - you will understand how to own and evolve an AI system in production.
What You Will Learn
• How to design ingestion pipelines for PDFs, Markdown, and databases
• Why chunking strategies directly affect retrieval quality
• How embeddings and vector stores fit into backend architecture
• How to build metadata-aware retrieval pipelines
• How to control LLM behavior with explicit prompt orchestration
• How to manage knowledge lifecycle: add, update, delete
• How to build RAG systems that remain correct as data changes
Course Modules Overview
This course is organized as a progressive backend system build, where each module introduces exactly one new system concern.
• Module 1 - Setup & Spring AI Baseline
Spring Boot + Spring AI setup and a minimal chat endpoint to establish the foundation.
• Module 2 - RAG Readiness
Use-case framing, data sources, and infrastructure setup (PostgreSQL, Redis).
• Module 3 - Ingestion Pipelines
Designing repeatable ingestion for PDFs, wiki content, and database records.
• Module 4 - Chunking Strategies
Source-specific chunking approaches and a unified chunking pipeline.
• Module 5 - Embeddings & Vector Storage
Generating embeddings and persisting them with metadata in a vector store.
• Module 6 - Retrieval Pipelines
Metadata-aware similarity search and clean retrieval integration into chat.
• Module 7 - Prompt Orchestration & Reliability
Grounded prompts, explicit behavior control, and citation-based, source-attributed answers.
• Module 8 - Knowledge Lifecycle
Safe add, update, and delete workflows to keep the system correct over time.
Who This Course Is For
• Java and Spring Boot developers
• Backend engineers integrating AI into real systems
• Developers who already understand REST APIs, databases, and Spring fundamentals
• Engineers who want to move beyond demo-level RAG implementations
Who This Course Is NOT For
• Absolute beginners to Java or Spring
• No-code or prompt-only AI learners
• Frontend-focused developers looking for chatbot-only examples
• Learners expecting quick "load a PDF and chat" style examples
Outcome
After completing this course, you will be able to
• Design RAG systems confidently
• Build production-grade AI pipelines using Spring AI
• Reason about correctness, reliability, and system boundaries
• Apply the same architecture to other real-world use-cases
This course gives you the mental model and engineering discipline needed to build AI systems that last.
Who this course is for
■ Java and Spring Boot developers who want to integrate RAG into backend applications
■ Backend engineers adding AI capabilities to existing systems and services
■ Developers who care about system design, correctness, and long-term maintainability
■ Engineers who want to understand how RAG works end-to-end, from ingestion to retrieval and controlled generation
Homepage
Código: [Seleccione]
https://www.udemy.com/course/spring-ai-rag-production-grade/
Recommend Download Link Hight Speed | Please Say Thanks Keep Topic Live
DDownload
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part1.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part2.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part3.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part4.rar
Rapidgator
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part1.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part2.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part3.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part4.rar.html
AlfaFile
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part1.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part2.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part3.rar
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part4.rar

https://turbobit.net/981w183su4e3/stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part1.rar.html
https://turbobit.net/jhryp6nfeyg4/stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part2.rar.html
https://turbobit.net/r7mk7a5hf5d1/stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part3.rar.html
https://turbobit.net/u7slr2l4rhb0/stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part4.rar.html
FreeDL
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part1.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part2.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part3.rar.html
stmml.Spring.AI..RAG.Build.ProductionGrade.AI.with.Your.Data.part4.rar.html
No Password  - Links are Interchangeable